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Let A = F,[t] be the polynomial ring over a finite field F,
and let ¢ and 1 be A-Drinfeld modules. In this paper we
consider the group Ext!(¢4,) with the Baer addition. We
show that if rank¢ > ranky then Ext! (¢, ) has the structure
of a t-module. We give complete algorithm describing this
structure. We generalize this to the cases: Ext!(®, ) where
® is a t-module and 9 is a Drinfeld module and Ext!(®, C®¢)
where ® is a t-module and C'®¢ is the e-th tensor product of
Carlitz module. We also establish duality between Ext groups
for t-modules and the corresponding adjoint t?-modules.
Finally, we prove the existence of “Hom — Ext” six-term exact
sequences for t-modules and dual t-motives. As the category
of t-modules is only additive (not abelian) this result is
nontrivial.
© 2023 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Drinfeld modules since their discovery [D74] gained a lot of attention in arithmetic

algebraic geometry because of their numerous applications e.g. in class field theory, in

Langlands conjectures, theory of automorphic forms or Diophantine geometry (see [G96],
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[ThO4] or [F13]). There is a deep analogy between the theory of Drinfeld modules over
function fields and theory of elliptic curves over number fields or more generally between
t-modules and abelian varieties over number fields (see [BP20]). This analogy justifies
various attempts to use the theory of Drinfeld modules in cryptology (see [GO3], [N19]).

There are also some significant differences. For example the Mordell-Weil groups of
t-modules are not finitely generated [P95]. The category of Drinfeld modules as well as
the category of t-modules are not semisimple i.e. there are non-trivial extensions.

Remark 1.1. Since in this paper we consider Ext groups in several different categories,
we indicate the appropriate category by a subscript 7,F[t] or o.

Let Exti (B, A) be the Baer group of extensions of t-modules i.e. the group of exact
sequences

0-A—>M-—=B—0 (1.1)

with the usual addition known from homological algebra (cf. [M95]).

Let ¢ and ¥ be Drinfeld modules. In this paper we study the group Exti(gb, ¥). It turns
out that sometimes we can endow the extension group Ext’ (A, B), for certain specific t-
modules, with a t-module structure. In our study we apply the method (used in [PR03])
of expressing the elements of Exti (¢,) by certain classes of biderivations. This idea was
originally introduced by G. Hochschild in his thesis for the study of extensions (the first
Hochschild cohomology groups) of associative algebras. It is worth mentioning that the
concept of describing an extension space as a cokernel of a line map was used by C.M.
Ringel for modules over path algebra of a quiver or more generally for K-species [R76],
[R98]. The content of the paper is as follows. In Section 2 we recall basic definitions and
properties of Drinfeld modules and t-modules. In Section 3 we identify the Exti(qﬁ, V)
for Drinfeld modules satisfying rk¢ > rkiy with some Fg-subspace of the ring of skew
polynomials K{7}. In Section 4 we compute an example which show how to endow
Exti (¢,) for the case rk¢ > rke) with the structure of a t-module. Section 5 is devoted
to the proof of general case i.e. that Ext}_(QS,w) is in the considered case a t-module.
In the proof of Proposition we describe a recursive step which is sufficient for finding
the exact formulas or designing a computer program. In Section 6 we generalize the
results from Section 5 to certain t-modules that are products of Drinfeld modules. A
brief discussion of the remaining cases i.e. rk¢) < rke is included in Section 7 where also,
for a perfect field K, a duality between t-modules and t?-modules is established. The
Duality Theorem (Theorem 7.2) allows one to describe Ext! (¢, ) for rk¢ < rkip as an
F,(t)-module. In Section 8 we discuss Extl(®, 1)) where ® is a t-module, ¢ is a Drinfeld
module and rk® > rki. In Section 9 we describe Ext!(®,C®¢) for a t-module ® such
that rk® > 2 and the e-th tensor power of the Carlitz module C. In Section 10 we
prove directly the existence of pullbacks and pushouts in the category of t-modules. We
also prove existence of the six-term “Hom — Ext” exact sequences, where the last map is
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surjective. As the category of t-modules is not an abelian category these are nontrivial
results (cf. Example 10.2). We conclude this section with some consequences of the six-
term exact sequences (Proposition 10.3 and Theorem 10.4). In Section 11 we discuss
briefly the category of Anderson dual t-motives (over a perfect field) in the context of
Ext! bifunctor.

2. Preliminaries

Let p be a rational prime and A = F,[t] the polynomial ring over the finite field with
q = p" elements and let K be a field of characteristic p. We say that K is an A-field
when we fix an F,-linear homomorphism ¢ : A — K with 6 := ¢(¢). Denote by K{r}
the ring of twisted polynomials in 7 with coefficients in K i.e. satisfying the additional
relation 72 = 277 for xz € K, see [GI0].

In [A86] G. Anderson developed a generalization of the notion of a Drinfeld module
called a t-module.

Definition 2.1. A d-dimensional t-module over an A-field K is an IF, - algebra homomor-
phism

® : Fy[t] — Matq(K{7}), (2.1)
such that ®(t), as a polynomial in 7 with coefficients in Mat,(K) is of the following form
®(t) = (0I4+ N)T° + Myrt + -+ M,7", (2.2)

where [; is the identity matrix and N is a nilpotent matrix.

In general, a t-module over K is an algebraic group E defined over K and isomorphic
over K to G¢ together with a choice of F,-linear endomorphism ¢ : E — E such that
d(t—0)"Lie(E) = 0 for n sufficiently large. Notice that in the last equality d(-) denotes the
differential of an endomorphism of the algebraic group E. The choice of an isomorphism
E = G4 is equivalent to the choice of ®. In order to indicate this choice of coordinates,
we write E = (GZ, ®).

Remark 2.1. Since the map ® is a homomorphism of F,-algebras a t-module is completely
determined by the polynomial ®; i.e. by the image of ¢. In the sequel, for a t-module &,
we will use the notations ®(¢) and ®; interchangeably.

The degree r of @, is called the rank of ® and it is denoted as rk ®.

Remark 2.2. Notice that this definition of a rank is not the usual one. In fact, usually
the rank of @ is defined as the rank of the period lattice of ® as a d®(A)-module (cf.
[BP20, Section t-modules]). Since our paper concerns the algebraic site of the theory of
t-modules the adapted by us equivalent definition of rank seems more convenient.
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Definition 2.2. Let ® and ¥ be a two t-modules of dimension d and e, respectively. A
morphism f: ® — ¥ of t-modules over K is a matrix f € Matgx.(K{7}) such that

In general, if £ = (G, ®) and F = (G¢, V), then a t-module morphism f : F — E is
a morphism of commutative algebraic groups f : G¢ — G% over K commuting with the
action of A i.e.:

The set of all morphisms f : F — E will be denoted as Hom, (F, E). We decided to
add the subscript 7 for the consistency with the notation used for the group of extensions
ic. Ext!(F, E).

Every t-module E = (G4, ®) induces an F,[t]-module structure on K¢, where multi-
plication by ¢ is given by evaluation of ®;, i.e.

txx = (x) for zec K%

This F,[t]-module is called the Mordell-Weil group of ® and it is denoted as ®(K?). Simi-
larly, each morphism f : E = (G4, ®) — F = (G¢, V) of t-modules induces a morphism
O(f) : ®(KY) — V(K®) of Fy[t]-modules. Then ®(—) is a covariant inclusion functor
from the category of t-modules to the category of F,[t]-modules. In the Example 10.2
we will see that this functor is not full.

Dimension one t-modules are called Drinfeld modules and the Drinfeld module C :
F,[t] — K{7}, given by the formula C(t) = 6 + 7 is called the Carlitz module.

We also consider the zero t-module of the form 0 : Fy[t] — 0. Then the category
of t-modules becomes an F,[t]-lincar additive category and the notion of a short exact
sequence (1.1) makes sense.

Recall from [PRO3], that each extension of a t-module ® : FF,[t] — Matq(K{7})
by U : F,[t] — Mat.(K{7}) can be determined by an Fg-linear map 0 : F,[t] —
Mateywq(K{7}) such that

d(ab) = ¥(a)d(b) + 6(a)®(b) for all a,be F,[t]. (2.3)

Such maps are called biderivations, and we will denote the F,-vector space of all
biderivations by Der(®, ¥). In the sequel we will, as usual, denote ®, := ®(a), ¥, :=
U(a) etc. It is easy to check that the biderivation ¢ is uniquely determined, by the value
d(t) € Matexq(K{7}). Then the map § — J(¢) induces the F,-linear isomorphism of the
vector spaces Der(®, ) and Mateyq(K{7}). Let §(7) : Matoyq(K{7}) — Der(®, ¥) be
an [F4-linear map defined by the following formula:

6 (a) =Ud, — U, U forall acF,ft] and U € Matoyq(K{r}).
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The image of the map 6(~) is denoted by Der;, (®, ¥), and the elements of Der;,, (®, ¥)
are called inner biderivations. In addition, both Ext!(®, ¥) and Der(®, ¥)/Der;, (®, ¥)
have F,[t]-module structures. Then from [PR03, Lemma 2.1] there is an F[t]-module
isomorphism

Ext! (®, ¥) 2 cokerd™) = Der(®, ¥)/Der;, (P, ¥). (2.4)

Because the map 6 — §(t) is an isomorphism, we will identify the coset §+Der;, (P, ¥)
with the coset 0(t) + Der;y, (P, Uy) in Matexq(K{7}), where Der;, (P, ¥;) = {5(15) |0 e

Der; (®, \I/)}.

Remark 2.3. In what follows we adopt the following notation: ¢(¥ := ¢?" is the evaluation
of the Frobenius twist 7¢ on an element ¢ € K. In particular ¢(9) = ¢.

3. Extension of Drinfelds modules with t-modules structures

In this section we study extensions of Drinfeld modules using biderivations. Our aim
is to equip the extension space Exti(qb, 1) with the natural t-module structure. This is
generalization of M.A. Papanikolas and N. Ramachandran results concerning the case
where 9 is the Carlitz module. Further, we will give some basic properties of these
t-modules.

Lemma 3.1. Let ¢ and v be Drinfeld modules, such that tk¢ > rk. Then there is an
Fy-linear isomorphism

Exth(9,1) = K{r}ency i= {w € K{r} | deg, w < rko}

Proof. We will identify the biderivation ¢ with the polynomial w(r) = 6(t) € K{7}. Let

n X m .

¢r =0+ a;7" and ¢y =60+ > b7, then n > m. From isomorphism (2.4) it suffices
i=1 j=1

to show that Der(¢,v)/Der;,(¢,1) = K{T} <. To prove this, we consider generators

of the space Der;, (¢, 1) of the form 5™ where k = 0,1,2,... and ¢ € K. We have:

(5(CTk)(t) =¥y — et = et (9 + Zn: aiTi> — (9 + i bjTj)CTk
i=1 j=1

=k 4 Z caz(.k)Ti“L/C — bk — Z c(j)bj7j+k

i=1 j=1

m n
— c(H(k) — 9)7’k + Z (ca;-k) — c(j)bj)TjJrk + Z caz(-k)TH']C
Jj=1 j=m-+1
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m-+k n+k
= (0 — )7 + Z (cayi)k - C(Jfk)bj_k)TJ + Z cayi)kTJ. (3.1)
j=k+1 j=mtk+1

Because deg, 5(”k)(t) = n + k for ¢ # 0, each non-zero inner biderivation is given by
a polynomial with 7-degree greater or equal to n. Therefore, if w,w € K{r}, w # @
are such that deg, w < n and deg, w < n, then w and w represent different cosets in

n+l .
Der (¢, 1) /Dern (¢, ). On the other hand given a polynomial w(r) = > a;7° € K{7}
i=1

with [ > 0, one can find ¢ (cf. (3.1)) such that the polynomial w(7) — 5™ has -
degree at most n + 1 — 1 and represents the same class as w in Der(¢, v)/Der;y, (¢, ).
By downward induction we obtain:

'[[}(7') = w(T) — 5(ClTl) — = 5(‘317‘1) _ 5(00)

where deg,. w < n and both w and w represent the same coset.
Therefore the isomorphism ¢ — §(¢) induces the isomorphism of Fy-vector spaces

Der(¢,v)/Deriy (¢,1) = K{T}<iky. O

Corollary 3.2. Let § € K{T}<x then & corresponds to the extension:

0=y —=>I—=¢—=0 (3.2)
where T' is given by the matrix Ty = [dgt 1215] Moreover, this correspondence is

compatible with the Baer sum of extensions i.e. if 61, 62 € K{T}<xy correspond to

1_ [P O 2 _ |9 O - - 1
Iy = {51 7/%‘} and I'; = [52 ?/)fl respectively then the Baer sum of extensions I'* and

2 | 9 0
I'® corresponds to I' such that I'y = 5146 | O

Remark 3.1. Notice that Exti((b, 1) is a reflexive bilinear space with the bilinear product
< 01,00 >= 2?701 a;b; where 61 = ag +--- + an,lT"_l and 6 = by + -+ + bnflTn_l.

Let ¢ and 1 be Drinfeld modules and let  := rk ¢ —rk ¢ > 0. Recall from [PR03] that
the structure of the F,[t]-module on Der(¢,¢)/Dery,(¢,1) is defined by the following
formula:

a x (5 + Derin(¢a '(/J>) = 140 + Deryy, ((ba w) (33)
for a € F,[t] and § € Der(¢, ).

Remark 3.2. For simplicity, we omit the notation +Der;,(¢,1) when considering the
coset 0 4+ Der;, (¢,1) in the space Der(¢, 1) /Der;p (o, ).
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4. An easy but essential example

In this section we give an example to illustrate how to determine the structure of a
t-module on the space of extensions of Drinfeld modules.

Example 4.1. Let ¢, = 0 + 72 and 9; = 6 + 72. By Lemma 3.1
Ext;(¢,¢) = K{r}<3 = {co+ 17 + ca7” | ¢; € K}.
In order to equip Extl(0 + 73,0 + 72) with the t-module structure we will transfer the
structure of the F,[t]-module from Extl(f + 73,0 + 72) to the space K{r}3 via the
2 .
isomorphism from Lemma 3.1. Since each element of K{7}.3 is of the form } ¢; 77,
i=0
it is sufficient to determine the value of multiplication by t on the generators ¢;7* for
i =0,1,2, where ¢; € K.
From (3.3) the value t % (¢p) can be computed in the following way:

t* (Co) = ’17bt s Co = (9—1—72) cCo = 960 +CE)2)7'2
Similarly,
tx(am) =t - = (0 + 72) 1T =0T+ 052)73.

Because the polynomial fc7 + c§2>73 does not belong to K{7}3, like in the proof of

the Lemma 3.1, we reduce the term 652)7'3 by the generator

6O) = ety — Pre=c(0+7°) — (0 +12)c = —cPD7r? 4 e
for ¢ = 052). Then
tx(c17) =017 + cgz)T?’ — 6 = fey1 + 054)7'2.
Next,
t*(CQT2) :wt.CQT2 = (9+T2) '02’7'2 :9627’24—6&2)7'4.
(2) 4

The term c; can be reduced by the generator

8C(t) = ety — Prer = er(0 +77) — (0 + 77)er
= —0(9(1) _ 9)7 — @3 er?,

for ¢ = céZ). Therefore

t (0272) =t* (6272) —oem) = 052) (9 — 9(1))7 + Oco7? + ch)T?’.
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The term 054)7'3 can be reduced by the generator () for ¢ = 054). Hence

t* (cor?) =t * (com?) — 6(C§2)T) - 5(C§4))
= (0 00)7 + (Bes + V).

Now, choose the basis eg = 1,e; = 7, e = 72 in K{7}3. In this basis the value ¢ * (cg)
has the following coordinates

tx(co) =0y + 082)7'2 = [6co, 0, 082)].

Notice that c((f) is the value of the polynomial 72 at cg. Let 72 |, := 062). Then we can

express ¢ * (¢g) in the following form

tx(co) = [0, 0,7'2]

leo”
In a similar way we obtain:

t*co=cob + cé2)7'2 =[6,0,7%

txc1T =107+ 054)7'2 =10,0,7",

lco

trcor® = (0 — 07 + (a6 + )% = [0,(0 — 672,60 + 9]

[ca

Then the multiplication by ¢t on K{7} can be expressed by the following matrix:

0 0 0
I,={0 6 6—6Wm (4.1)
2 ot 445

This matrix induces the homomorphism of F,-algebras

I : F,[t] — Mats(K{r}),

such that
00 0 000 000
=034+ {0 0 (0—0D)[r>+]0 0 0f7*+|0 0 0]
10 0 010 00 1

Therefore TI gives rise to a t-module structure on Extl (6 4 73,60 + 72).
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5. Ext}_(d), 1)) for Drinfeld modules ¢ and v with rk ¢ > rk v
We have the following:

Proposition 5.1. Let ¢ and ¥ be Drinfeld modules such that rk ¢ > rkip. Then Exti(d), )
has a natural structure of a t-module. This is given by the map II : F,[t] —
Mat,y ¢ (K{7}), where

M= . . (5.1)

At this moment, we will focus on the proof that the t-module structure comes from
the matrix (5.1). Next we will see that the matrix 1Y gives rise to a t-module structure
on Ext(l)’T(dg ) and the vector [d1, -+ ,d,_1]" determines the extension of Extéﬁ((b, )
with Exti(qﬁ, ) as the middle term.

Proof. We will describe an algorithm that allows us to determine the structure of the
t-module on Ext! (¢, ). From the Lemma 3.1 we know that

EXt}-<¢7 1/}) = {CO +ar+--+ crk¢717rk¢_1 ‘ c; € K}
as an [F -vector space. In order to equip Exti(¢7 1) with the t-module structure we will

transfer the structure of the F,[t]-module form Ext’ (¢, 1) = Der(¢,1))/Der;, (¢, ) to the
space K{7} <.k via the isomorphism from Lemma 3.1. Since each element of K{7} ke

rk ¢p—1 )
is of the form > ¢;7%, it is sufficient to determine the value of multiplication by ¢ on
i=0
the generators ¢;7¢ for i = 0,1,...,rk¢ — 1, where ¢; € K.
Next we will choose the coordinate system e; = 7% for i = 0,1,2,...,tk¢ — 1 in

K{7} <4 and see that the matrix II, of the multiplication map ¢ * (—) : K{7} <y —>
K{7} <1k ¢ gives rise to the t-module structure on Extl(qﬁ, ). This structure is given by

(5.1).
Assume that ¢; =0+ Y a;7%, ¥y =0+ > bj77 and r :== n — m > 0. Then from the
=1 =1

formula (3.3) we see that
t* (it =y -7t for ;€ K and i=0,1,2,...,tk¢ — 1.

Suppose that i € {0,1,...,7 —1}. Then

tx (¢mh) = (0 + i b‘j7j>ci7i =01 + ibjcz(-j)Tj“' € K{7}<iko

Jj=1 Jj=1
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Hence

i—1

. —N—
£ (cirt) = [0,...,o,e,blcgl),b20§2>,...,bmém),o,...o} _

K3

{0,...70,9,b17,b27'27...,bmrm,O,...O} =
—_—— le;

i—1
Therefore the first r column of the matrix IT; satisfy our claim.

Consider the case i € {r,7 + 1,...,tk¢ — 1}. In this situation the element v; - c;7°
has T-degree bigger than rk ¢ — 1, so like in the proof of the Lemma 3.1 we reduce the
monomial with the biggest 7-degree by the generator 5™ ¢ Der;, (¢, 1) and continue
this procedure until we get the reduced polynomial belonging to K{7} <k ¢.

Then we perform downward induction from n + 4 — 7 to n and see that at each step
after the reduction we obtain polynomials satisfying the following properties:

(i) the term at 7° of the reduced polynomial is equal to zero,

(i) each coefficient at 7! of the reduced polynomial can be written as the evaluation at
¢; of a skew polynomial w;(7),

(iii) if I # ¢, then the skew polynomials w;(7) from (i¢) have no free term,

(iv) the skew polynomial w;(7) has a free term equal to 6.

From (i) we see that the matrix II; is of the form as claimed. On the other hand (i7)
implies that after the reduction procedure is completed we can present the coefficients in
the chosen coordinate system e; = 7%, as the values of the skew polynomials in ¢;. Write
the matrix II; in the following form

finite
O, =(0-1+N)7°+ > Air', where I,N,A; € Maty4(K).

1=1

The condition (7i¢) implies that the matrix N = 0 and the condition (iv) implies that I
is identity matrix. Therefore IT; yields the t-module structure on Extl(¢,))
Induction: At the start of the induction we consider the following polynomial:

tx (cir') = cifr' + Y bje It (5.2)
j=1

that satisfies conditions (i) — (iv) in an obvious way.
Suppose we have made k reductions that satisfy conditions (i) — (¢v). Therefore the
value t * (¢;7) after reductions can be written in the following form:

’LUi,T,kJrl(Ci)Ti_T_k—H + wi—r—k+2(ci)7i_r_k+2 S wm+i—k(ci>7m+i_k7
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where the polynomials w;(7) satisfy conditions (i) — (iv). We reduce the term

4 P Wynti— 1 (C;
Wik (ci)T™ T by the generator §(¢7 ") where ¢ = m(tirfi)z) Because all non-
Gn

zero terms of 5(CTf7T7k) have 7-degree > 1, then (i) is obvious. Recall that from (3.1)
the generator 5™ ") can be rewritten in the following form:

mei—k—1
)= Y pilc)r?+ cal7mR) Fmrich
j=i—r—k —

i—r—k)

6(07’
=Wm+i—k (Cz)

where the polynomials p;(7) € K{7} satisfy the conditions (i) — (iii). Therefore after
the reduction by the generator 6™ ") we obtain the following form of ¢ * (¢;7%):

m-+i—k—1

i (c)T TR 4 Z (wj(c;) — pile))T.

j=i—r—k+1

We put w;—,—1(7) = —pi—r—i(7), W; (1) = wj(7) —p;(7) for j =i—r—k+1,...,m+i—
k—1. Because the polynomials p;(7) and w;(7) satisfy the conditions (i) — (i#4) and w;(7)
satisfy (iv), then the polynomials wj(7) also satisfy these four conditions. This completes
the induction step, and thus we proved that Extl(qb, 1) has a t-module structure. O

For A € Mat,, xn, (K{7}) let dA € Mat,, xn,(K) be the constant term of A viewed
as a polynomial in 7. For t— modules ® and ¥ let

Dero(®, ¥) = {§ € Der(®,T) | di(t) =0}. (5.3)

Following [PR03] define Ext(1)77(<1), U) := Derg(®, ¥)/Derg(®, ¥) N Der;,, (P, ¥). We have
the following:

Lemma 5.2. Let ¢ and ¥ be the Drinfeld modules, such that r =rk¢ —rky > 0. Then

(1) there exists an isomorphism of Fy[t]-modules between Ext(l)’T(d), V) and K{1} 1k ¢) =

rk¢p—1 )
{ ot ¢ EK},
i=1
(it) K{T}akg) is an Fy[t]-submodule of K{T} <1k g,
(#i7) Ext(l)ﬁ((b, V) is an Fy[t]-submodule of Extl(¢,1)),
(iv) Exté7T(¢, ) has a natural structure of a t-module.

Proof. The proof of part (¢) is similar to the proof of Lemma 3.1. Recall, that

Ext{ (¢, %) = Dero(¢,1)/Derin(¢,1) N Derg(¢, ¢)) and §€™) € Derg(¢, ¥) for all k > 0.
Because deg. (5§Tk) = rk ¢ + k each biderivation ¢ € Derg(¢,1) can be reduced as in the
proof of the Lemma 3.1. This implies ().
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The vector space K{7}(1 k) has the F,[t]-module structure coming from the same for-
mulas ¢ * (cka) for k=1,2,...,n—1 as in the case K{7} <,k . Therefore the standard
inclusion K{7} (1 ky) — K{T}<rke is the inclusion of F[t]-modules. This establishes
(i3).

(iit) follows from (i) and (i4).

Part (iv) follows from the proof of the Proposition 5.1, where the matrix I1Y from (5.1)
induces the homomorphism I1° : Fy[t] — Mat,_1(K{7}) giving rise to the t-module
structure on Ext(lJ’T(qS, ¥). O

The following theorem is a specialization of [PR03, Lemma 2.2]. However, we are able
to describe the maps in an explicit way.

Theorem 5.3. Let ¢ and v be Drinfeld modules, such that r = rk¢ — rk > 0. Then
there is a short exact sequence of t-modules

0 — BExt{ - (¢,1) — Extr(¢,¢) — G, — 0. (5.4)

Proof. Let 119 and II; be the matrices giving the t-module structures for ExtaT(qﬁ, V)
and Extl(¢,), respectively. Then the matrix

0...0

Licg—1
induces the inclusion of t-modules 7 : Ext(l),T(gf), V) < Exti(qﬁ, ¥). It is easy to check that
coker(7) is the trivial t-module G,. O

Remark 5.1. Notice that the biderivation corresponding to the extension (5.4) comes
from the first column of II;.

1
6. Eth— (H?:l ®i, H.;r;l 1/’3)
We have the following generalization of Proposition 5.1:.

Theorem 6.1. Assume that ¢;, v; fori=1,...,n, j = 1,...,m are Drinfeld modules,

such that vk ¢; > rkap; for alli,j. Then Extl (HZL:I ?i, H;n:l ’(/Jj) has a natural structure
of a t-module.

Proof. Let ¢;(t) = 6+ 3 aspr® for i = 1,...,n and ¢;(t) = 6 + - bur* for j =
k=1 k=1

1,...,m. We put

N =max{n; |i=1,...,n} and M =max{m;|j=1,...,m}.



D.E. Kedzierski, P. Krasori / Journal of Number Theory 256 (2024) 97-135 109

Denote by E;x; the m x n the elementary matrix with the only one non-zero element
equal to 1 at j x i place. The elements §(¢7 Fixi) generate Derm<H?:l qSi,H;.n:l wj)7
where

N M
5(CTTE_7‘><i)(t) — Ej><i . <C(9(r) _ 0) g ZCGETZ)TTJFZ _ Zc(l)ijTlJrT)
=1 =1

€Der;p, (qu 711)]')

Then

Derin(¢1,%1) -+ Deryy(¢n, 1)
Derm(d)l, ¢2) s Derm(¢m ¢2)

Derm(ﬁéf)i,ﬁ%) = 5
i=1  j=1

Derm((bh ¢m) e Derin ((bna 1pm)

and therefore

EXt}_((bl, 1) - EXt71— (¢ns91)

EXt}_((f)l, Pa) - EXt71— (Gns1b2)
_ . : ; (6.1)

Ext! (ﬁ s, ﬁ ¢j) o~
i=1  j=1

Ext(é1,¥m) - Ext(dn, ¥m)

as IFg-linear spaces.
Moreover, for a € F,[t] and a biderivation § € Der( [Ti—, o4, H;nzl 1Z1j) we have

a*xd = (ﬁ%)(a)-éz

P1(a) 0 0 01x1(7) 01xn(T)

_ 0 1/12(61) O 62><1(7') (ngn(’r) B
i 0 0 m(a) (5mx.1 (1) Smxn(T)
[ Wi(a) - d1xa (1) () - Gixa(T) P1(a) - G1sn (T

(@) () (@) - Goca(r) - (@) - Somsen ()

[ax611(7)  a*61xa() -+ axS1xn(T)
a*(sgxl(’f) a*52x2(7) a*52xn(7')

| @ 0mx1(T)  a*Omxa(T) -0 @ Gmxn(T)
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Hence the isomorphism (6.1) preserves the structure of Fy[t]-modules. Because rk ¢; >
rk t;, then Ext!(¢;,1);) has a structure of a t-module. Let Iy ; : Fy[t] — Mat,,, (K){7}
be the map, which gives the structure of the t-module on Exti (¢4, ;) in the base Tl =
0,1,...,n; — 1, same as in the proof of the Proposition 5.1.

Let el, ; denote the element 7' - Ejy ;. As Fy[t]-modules

Extr(f1,41) - Extr(én,¢1)
EX‘E.IF((ZH7 Po) e EXt-}— (¢, 2)

I

Bxtt ([[én]] %) :
i=1  j=1

Extt(¢1,¢%m) - Extl(en, ¥m)

we choose the following coordinate system:

ny1—1 ni—1 n;—1
1x1 =0 ) 2x1 =0 ’ ’ mXx1 =0 )
na—1 na—1 na—1

l l l
€1x2 =0 €22 =0 Cmx2 =0

ni—1 ny—1 Ny —1
G R C AR G
1xn l:O’ 2Xn l:O’ ’ mxn =0

Then the t-module structure on Ext! (H?:l oi, [ 172, wj) is given by the map II :
Fy[t] — Mat,,.yn n, (K){7}, defined by

[ [Hlxj(t)}:;1 0 0 ]
T(t) = ’ {Hm@}m—l ’ ,
R R, A

where [Hixj(t)] _l is the diagonal matrix with the elements II;x1(t), IL;x2(t), ...,

IL;«m (t) on the diagonal. O

Corollary 6.2. Assume that ¢;, ¥; fori=1,...,n, j = 1,...,m are Drinfeld modules,
such that tk ¢; > rkep; for all i,j. Then there is a short exact sequence of t-modules

n m

0 — Exto., (ﬁ@-, ﬁ o;) — Bxth ([Jon ] v5) — i —o.

i=1  j=1 i=1  j=1
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7. Ext}_(d), 1)) for Drinfeld modules ¢ and v with rk ¢ < rk )
7.1. Case tk ¢ =k

This case is difficult to handle. We can express the generators § (”k)7 wherec € K, k =
0,1..., of the space Der;, (¢, ) in the following way:

(5(CTk)(t) =¥y — et = er* (0 + iam‘i) — (9 + ibjTj)CTk
i=1 j=1

o (7.1)

=c(0® —o)r + 3 (caﬁ’?k _ ik bj_k)Tj,
Jj=k+1

Notice that we cannot claim that the polynomial in the variable 7 has degree n + k
which was important for the identification of the biderivation ¢;77 with the polynomial
w(r) € K{r}. However excluding finite number of ¢'s in every degree k one can express
a biderivation chj as a polynomial in K (7) of degree less than n. At every stage of the
reduction process, in order to assure vanishing of the term with highest power of 7, a
solution of a polynomial equation with the coefficients in the function field is required.
There are, in some cases, efficient algorithms to do this (cf. [GS00]). However, it is
unreasonable to expect that the roots of the polynomials that appear are expressed as
polynomials in the variables c¢;. So, in general we do not obtain a t-module structure.

7.2. Casertk¢ < rk

Let K be a perfect field. Denote by ¢ the inverse map to 7. For the sake of simplicity
we denote the value of 0¥ (c) as ¢{=*) for ¢ € K. Then the ring K {c} is the ring of adjoint
twisted polynomials in K such that

or=2"Y0 for zek, (7.2)

(cf. [G95]). We can consider the t°-module which we can define as in Definition 2.1
by replacing 7 with ¢. Similarly, we define a morphism of the t?-modules. Again the
category of t7-modules with the zero t”-module attached is an additive, F,[t]-linear
category. Moreover, there is an isomorphism of F,[t]-modules

Extl (@ ¥2d) = Der(02d, ¥24) /Der;,, (974, w29,

where ®*d and ¥4 are t7-modules.

Let w(z) = Y1 ja;z’ then w(t) € K{r} and w* = w(o) € K{o}. Let ¢(z) =
6+ > 7"  az’ and P(z) = 6 + > ;- bz’ be polynomials in K[z] then ¢(7),(r) are
Drinfeld modules and ¢(o), (o) are Drinfeld t“-modules.
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Lemma 7.1. Let ¢(x) = 0+ > 1" | a;x’ and (x) =0+ > 1" bz’ be polynomials in K[x]
such that deg ¢(x) > deg)(x) and let the t-module ExtL(¢(7),1(7)) be given by the map

IT: Fy[t] — Mat,, (K{7}).
Then the F,[t]-module Extl (¢(c),1(0)) has a structure of a t”-module, given by the map
Il : F,[t] — Mat, (K{o}),

where the matrix ﬁt is obtained from the matriz Iy, by replacing 7 with o and coefficients
of the form ¢ with coefficients of the form (=%,

Proof. Similarly as in the proof of Lemma 3.1 we reduce a biderivation 6 € Der(¢(o),
(o)) by the generators 57 of Der;,, (¢(0),¥(0)). As a result we obtain that

Der((0), %(0)) = K{0}<n := {w(0) € K{0} | dego(w) < n}.

Let co® be a generator of K{o},. Then

txciot = (0)ciot = fcio’ —|—Zb ¢ D giti, (7.3)
j=1

Comparing the equality (7.3) with the value of t*c;7% (see (5.2)), we conclude that t*c;o?
can be obtained from t * ¢;7¢, by replacing T with ¢ and coefficients of the form cEj ) with
the coefficients of the form cg_j ),

It is easy see, that in the same way, we can obtain the generator (™) from ().
Therefore after the reduction process txc;o* can be obtained from t+c;7 by the previously

described replacement. This proves the claim. O

Example 7.1. Consider the following polynomials: ¢(z) = 6 +az?® and 1 (z) = 0+ bz? for
fixed a,b € K. Then the t-module structure on Ext}(4(7),1(7)) is given by the following

matrix:

9 0 0
b

M- |0 0 S (9—9@))72
- a

b2 b-p®2 A b-p32 . pA) 6

T R G )

Then the t-module structure on Ext’ (¢(c), (o)) is given by the matrix:

0 0 0
b
~ (=1
II; = 0 (92) a1 (f 2)9 -4 ))U
ho? b-b " b-b ) ”

al=2) al=5) . q(=2)
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Let us note, that in this example we did not carry out calculations, because the matrix
I1; can be easily obtained using the recursive procedure described in Proposition 5.1.

Consider the following maps:
(=) : K{r} = K{o}; (Zaﬂi) = z:az(._i)ai7 (7.4)
i=0

(=) : K{o} = K{r}; (Z biai>7 = Z bZ(-i)Ti. (7.5)

These maps are F,-linear mutual inverses. We associate with ® : F,[t] — Mat.(K{7})
the adjoint homomorphism

O : F,[t] — Mat.(K{o}) (7.6)

T
such that each matrix X; is mapped to [(Xt(T))U] i.e. the matrix entry X, ;(7) is

mapped to (iji(T))U. The inverse of (—)? is given by the map that associates with
I' : Fy[t] = Mat.(K{c}) the following homomorphism:

™ : Flt] — Mat.(K{r}); X, — [(Xt(o))T]T (7.7)

We have the following duality:

Theorem 7.2. Assume that K is a perfect A-field. Let ® and ¥ be t-modules. Then there
ezists an isomorphism of Fy[t]-modules:

Extl(®, ¥) = Ext} (07, 37) (7.8)
Proof. Notice that
Ext!(®, ¥) = Der(®, ¥)/Der, (®, U); ¢+ 6,(7) = ¥, - §,(7) (7.9)
and
Extl (U7, &%) = Der(¥7, &%) /Der;, (U7, ®%); t  5,(1) = 67 (0)¥? (7.10)

One readily verifies that (—)7 is well defined since it maps inner biderivations onto
inner biderivations. Similarly, for (—)7. Thus we have a bijective map (induced by (—)?)
Extl(®,¥) — Extl (U7, ®7). As

(t s cm?)7 = (Wyer®)7 = PR TT = 14 TR P = 1 (erF)”

we see that (—)7 is a homomorphism of F,[¢]-modules. O
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Lemma 7.1 and Theorem 7.2 allow one to compute easily the F,[t]-module structure of
Exti(gb, 1) for Drinfeld modules satisfying rk ¢ < rk1). We will see that this [, [¢]-module
structure comes from the t?-module structure in a natural way.

Example 7.2. Let ¢, = 0 +b72 and ¢, = 0+ a73, for fixed a,b € K, be Drinfeld modules.
Then Theorem 7.2 implies that there is an isomorphism of F[t]-modules

Extl(0 +b72,0 + a7®) 2 ExtL (0 + o703, 0 + b(-2?).
By Lemma 7.1 the adjoint t“-module structure on
Extl (0 4+ a"¥o?, 0 +0-2o?)
is given by the matrix ﬁt obtained from matrix IT; of
Ext! (6 +a=73,0 4 b(-272),

by replacing 7 with ¢ and coefficients of the form ¢ with coefficients of the form ¢(=%.
Therefore Exti (0 +b72,0 + ar®) has the t?-module structure, given by the matrix

9 0 0
(-2)
0 0 bH) (0-001)0?
a
p(=2) . p(—4) bp(=2) . p(=4) . p(=6)
(=2) 2 4
v P B A oo W ooy R

The following theorem is a consequence of Theorem 5.3, Lemma 7.1 and Theorem 7.2.

Theorem 7.3. Assume that K is a perfect A-field. Let ¢ and v be Drinfeld modules, such
that tk ¢ < k1. There is a short exact sequence of t7-modules

0 — Bxt{ . (¢,1) — Ext(¢,¢) — G, — 0. (7.11)

Remark 7.3. In a similar way, one can prove “t?-version” of the Theorem 6.1 and Corol-
lary 6.2 for the products of Drinfeld modules.

8. Ext!(®,), where ® is a t-module and 1 is a Drinfeld module

In this section we consider Ext!, where ® is a t-module such that the matrix at the
highest power 7% ® of ®, is invertible and 1 is a Drinfeld module. First assume that this
matrix is the identity matrix.
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n .
Lemma 8.1. Let ®; = (I+Ng)7+ Y. A;j77 be a t-module of dimension d, where A,, = I
j=1

m .

and let Y, = 0+ " b;77 be a Drinfeld module. If tk ® > rk) then we have the following
j=1

isomorphisms of F,— vector spaces:

@d
(i) Ext}(®.4) = (K{7}<oca)
(ii) Exto  (P,1) = @?:1 K{t}u,r,, where r; = 1k ® — 1, if the i-th row of Ng is null
and r; =tk ® otherwise.

Proof. Part (i): Any biderivation 6 € Der(®,1) is described by a matrix belonging to
Matyyq(K{7}). Let E; € Matj44(K) be a matrix which has 1 at the i-th place and
zeroes otherwise. We will determine an inner biderivation 67 ). Denote by a;,ix; the
i X [-term of matrix A;. Then the corresponding inner biderivation has the following

form:

5(” B —ert i((el + Ng)7° + ZAjTj) — (9 + Z bjTj)CTkEZ‘ = (8.1)
j=1 j=1
n—1 n—1
= Z agi)xlTk“, . Z agi)m 17’““, C(O(k) - G)Tk+

=1 j=1

m n—1
+ Z (ag‘i’)xi - C(j))Tkﬂ + Z a;‘i')xﬂkﬂ +erttn,
j=1 j=m+1
n—1 n—1
k ; k

Zag‘,i)xwﬂkﬂ’ - §z)><d7- +4| + cENPTE,
j=1 j=1

where N(gf) indicates that all terms of the matrix Ng are raised to the power ¢*. Notice
that a polynomial at the i-th coordinate of the inner biderivation (8.1) has degree k +
n and the polynomials at all other coordinates have degrees less than k& + n. Thus
we can proceed similarly as in the proof of Lemma 3.1 and reduce the biderivation
0 so that at every coordinate we obtain a polynomial in 7 of degree less than n =
rk ®. It is obvious that two different reduced biderivations determine different cosets in
Der(®, ) /Der;,, (®, ). This proves part (7).

Part (i7): Let 6 € Derg(®, ), i.e. &; has a zero constant term. Notice that by means of
the inner biderivation 6(¢™" ) € Derg(®, ) for i € {0,1,...,d} we can reduce the i-th
coordinate of §; to a polynomial of degree less than rk ®. If 6(”0E ¢ Derg(®, 1)) then
the j-th coordinate of d; can be reduced to a polynomial of degree less than or equal to
rk ®@. To finish the proof notice that the form of the inner biderivation (8.1) implies that
5™ ED) ¢ Derg(®,v) iff E;Ng = 0 i.e. the i-th row of Ng is zero. O
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n .
Proposition 8.2. Let ®; = (0] + Ng)7° + > A;77 be a t-module of dimension d, where
i=1

m .
Ap =1 and let ¢, =0+ ) b;j77 be a Drinfeld module. If rk & > rk) then

j=1
(i) Ext:(®,1) has the natural structure of a t-module,
(ii) there exists a short exact sequence of t-modules:

0 — Extg,(®,9) — Ext!(®,4) — G5 — 0,

where s is the number of zero rows of the nilpotent matric Ng.

Proof. Proof of part (i) is analogous to the proof of Proposition 5.1. Let E; € Matjxq
be a matrix which has 1 at the i-th place and zeroes at all other places. From Lemma 8.1
we know that

Extl(®, ) = (K{r}<rk¢)®d

®d
Thus in order to transfer the F,[t]-module structure to the space (K {r }<rk<I>> it

suffices to find multiplication by ¢ on the generators of the form c¢r*E;, where 0 < k <
tk® and i =1,2,...,d. If a degree of t* ¢, 7" is bigger than rk ® then appropriate terms,
starting from the term with the highest power of 7, can be reduced by means of the inner
biderivations of the form 6™ E)_ After each reduction at every coordinate we obtain a
polynomial satisfying conditions (i) — (iv) of the proof of Proposition 5.1. In this way
after the following choice of basis:

(TkEl)Z;év (TkEQ)Z;é’ R (TkEd)Z;é

we see that Ext!(®,1)) is a t-module with a zero nilpotent matrix.

It is also worth noting that reducing by the inner biderivations 5™ B for any i we
cannot obtain a nonzero term at 7E; if §(c7"F1) ¢ Dero(®,). This means that if
5B ¢ Derg(®,) then the row corresponding to the coordinate 7°E; in the matrix
II; is of the form

0,...,0,9,0...,0}, (8.2)

where the only element # corresponds to the coordinate 7°E;.

For the proof of (i) recall that there exists a canonical embedding Extg -(®,9) —
Extl(®,) defined on the level of biderivations. This map is given by a matrix of twisted
polynomials in K {7} such that the row corresponding to the coordinate 7°E; is zero iff
the inner biderivation 6 ) € Dery(®, ¥). Let s be the number of inner biderivations
of the form (7 B belonging to Dero(®,1)). Consider a map g : Ext!(®,1)) — G? given
by a row matrix where the only nonzero elements are equal to 1 at places corresponding
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to the coordinates for which §(¢™ B0 ¢ Dero(®, ). In order to show that g is a morphism
of t-modules one has to check the equality g - II; = 8 - g. This follows from the fact that
the row of II; corresponding to the coordinate 7°FE; is of the form (8.2) if 5B ¢
Derg(®, ). Thus we obtain the following exact sequence of t-modules.

0 — BExtg,(®,v) — Ext}(®,4) — G5 — 0. O

P

The case where ® is a t-module such that ®, has an invertible matrix at 7'5® can be

derived from the Proposition 8.2. We have the following:

Theorem 8.3. Let ®; = (1 + No)7°+ Y. A;77 be a t-module of dimension d, where A,
j=1

is an invertible matriz and let ¢, = 0 + > b;77 be a Drinfeld module. If tk ® > rk
j=1
then

(i) Extl(®,4) has a natural structure of a t-module,

(it) there exists a short exact sequence of t-modules

0 — Extg,(®,¢) — ExtL(®,4) — G5 — 0,
where s is the number of zero rows in the matriz A, ' Ng.

Proof. In the current situation, for the reduction process, we use different inner bideriva-
tions than these used in the proof of Proposition 8.2. Let cT*E; A1 € Mat;xq(K{7}).

T EiALY) again have the property that a polyno-

We see that the inner biderivations §¢
mial at the i-th coordinate has degree n + k and polynomials at all other coordinates
have degrees less than n + k. Analogous reasoning to that of Proposition 8.2 completes
the proof of (7).

For the proof of (i7) we have to check that the inner biderivation ¢§ ") belongs to

Dero(®, ). To do this we compute a constant term of this inner biderivation:

(emE; A7

CoTOEiAT_Ll(HI + Nq>) — QCOTOEZ‘A;I =

— 0 —1 0 -1 0 -1 _

=CoT EyA,n 0[+Co7’ E7An Nq> 79007’ EyAn =
:COTOGIEiAT_Ll — QCOTOEZ‘A;1 + CoTOEiA;1N¢ = CoTOEiA;1N<I>

Therefore, 57" Bidn’) ¢ Derg(®, ) iff the i-th row of the matrix A, ! Ng is zero. Similar
reasoning as in the proof of Proposition 8.2 yields the result. O

Just as in Theorem 6.1, one can show the following:
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n .
Theorem 8.4. Let &, = (01 + Ng)7° + > A;77 be a t-module of dimension d, where
j=1
A, is an invertible matriz. Let v¥; i = 1,...,m be Drinfeld modules. If tk ® > rk; for

i=1,...,m then

(i) Extl(®,[[", ¢:) has a natural structure of a t-module,
(it) there exists a short exact sequence of t-modules

0 — Exto (@, [ [vi) — Exti(@, [[vi) — G — 0,
i=1 i=1
where s is the number of zero rows of the matriz A, Ng.
One can also show “t?-version” of Theorems 8.3 and 8.4. We state a more general
result for the product of Drinfeld modules:

Theorem 8.5. Let K be a perfect field. Let Wy = (014 Ng)7%+ > B;77 be a t-module of
j=1

dimension d, where By, is an invertible matriz and let [[\", ¢; be a product of Drinfeld
modules. If tk W > rko; for i = 1,...,m then there exists a short evact sequence of
t7-modules:

0 — Bxto ([ ] 60 ®) — ExtL([[ ¢, ¥) — GI** — 0,
=1 =1

where s is the number of nonzero rows of the matriz A ' Ny.
9. Extl(®,C®°) for t-module ®

In this section, we show that the method of reductions by means of inner biderivations
used earlier allows one to determine the space of extensions for a t-module ® such that
®, has an invertible matrix at 7'¥® and C®¢ is the e-th tensor of a Carlitz module.
Recall from [AT90] that C®¢ = I, + N, + Eex17 where

- 1 [0 1.0 --- 0]
1 (1) 8 001 -~ 0
I, = , , N, = : ;
IR
[0 0 0]
Eex1 = 0 O € Mat,(K).
10 0]
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n .
Lemma 9.1. Let ®; = (01+ Ng)7°+ > A;77 be a t-module of dimension d, such that A,
j=1
is an invertible matriz and let C®¢ be the e-th tensor of the Carlitz module. If Tk ® > 2

then we have the following isomorphisms of Fy-vector spaces:

(i) Exth(®,C%) = Matexa (K {7} <o ),

K{T}[l,rl] K{T}[l,rz] e K{T}[Lm]
K{t}umae) K{7}pre) - K{7}arke
(if) EXtO’T((I),C@e) ) ‘[1 ] -[1 ] ' ‘[1 ] ;
K{t}nmwae) K{T}pwae) - K{T}irka
where r; = tk® — 1 if the j-th row of the matriz A,*Ng is zero and r; = rk®

otherwise.

Proof. Let E;y; be a matrix with the one nonzero entry equal to 1 at the place i x j.
Then a similar calculation to that done in the proof of the Theorem 8.3 shows that the
inner biderivation 6(Y) for U = ckaEinA,_Ll is given by a matrix which as the i x j
entry has a polynomial of degree k + rk ® and at all the other entries polynomials of
degrees less than k + rk ®. Reduction by biderivations chosen in such a way yields (7).
For the proof of part (ii) notice that if the inner biderivations §(V) for U = cg70Ejx ;A5
belong to Derg(®,C®¢) then we can use this biderivation in the reduction process
and get r;x; = rk® — 1 and r;x; = rk® otherwise. r;5; denotes here the degree of
a polynomial occurring as the i x j entry of the reduced matrix. In order to decide
whether §(U) € Derg(®,C®¢) or not one has to compute the constant term of (V) where
U =com’E;x« AL 1. This constant term is of the following form:

ot By jA (014 + Ng) — (01, + Ne)eom’Eix ;A =
ZCQQTOEinAgl =+ CoTOEinAgqu) — CoeTOEinAgl — CoTONeEinA;1 =

:CoTOEinA;1N¢ — CoTONeEiX]‘Agl = Cp (EinA:LlNQ — NeEinAgl)TO
Since N = Y1 _, Ex—1xx we have

0 if i=1
NeEi j = . .
*J {Eilxj if i=23,...,e.

Then if i+ = 2,3,...,e we have the equality NeEinA:Ll = i,lxjAgl # 0. This is

because as the result of the matrix multiplication F;_1x; - A;,

1 we obtain a matrix in

which the (i — 1)-th row is equal to the j-th row of the matrix A, and all other rows
are zero. Of course all rows of A,, are nonzero. Therefore one concludes that §(V) ¢
Derg(®,0%¢) for U = ¢om°Eix;A;" and i = 2,3,...,e. For i = 1 we see that §(V) €
Derg(®,C®°) iff the j-th row of the matrix A1 Ng is zero. O
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n .
Theorem 9.2. Let ®; = (01 + No)7° + > A;77 be a t-module of dimension d where A,
j=1
is an invertible matriz and let C®¢ be the e-th tensor of the Carlitz module. If Tk ® > 2,
then

(i) Extl(®,C0%¢) has a natural structure of a t-module,
(ii) there exists a short exact sequence of t-modules

0 — Extg ,(®,0%%) — Ext!(®,C%°) — G5 — 0,
where s is the number of nonzero rows of the matriz A, ' Ng.

Proof. The scheme of the proof is the same as of analogous theorems. One uses
Lemma 9.1 and reduction by means of the inner biderivations described in the proof
of this Lemma. The reduction process fulfills the properties (i) — (iv) described in the
proof of the Proposition 5.1. In the current situation we use the following coordinate

system:
& rtk®—1 k rkd—1 & rkd—1
(ElxlckT ) s (EIXZCkT ) I (E1dekT ) s
& rk®—1 & rkd—1 & rkd—1
(E2><lckT ) o (szzckT ) I (szdeT ) o
& rk®—1 & rk®—1 & tkd—1
(EexlckT ) o (EeXQCkT )k—o ;o (EexdckT ) B

It is worth pointing out a significant difference which occurs in this case. In the former
cases Extl was a t-module with the zero nilpotent matrix which was a result of the
aforementioned properties (¢i¢) and (iv) of Proposition 5.1. In the current case, reductions
again will not change this, but at the stage of the multiplication t * E;jc,m" we can
obtain nonzero entries of the nilpotent matrix. More precisely for ¢ = 2,3,...,e we
obtain:

t * Eixjcm'k =(C%°. Eixjckrk = <9[e + N, + E1XST>Eincka
= eEincka + Ei—lijka

- [0,...,0,0,...,0,1,0...,0,0,...,0,0,0...,0,0...,0]

i—1xj iXJ

[ck

Thus Ngy1(e,c®e) is an upper triangular matrix with zeroes on the diagonal and there-
fore nilpotent. This finishes the proof of (7). Proof of (i7) follows the lines of the proof
of part (i7) of Theorem 8.3. O
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Remark 9.1. Similarly as at the end of Section 8 using Theorem 7.2 we can prove the
“t? —- version” of the Theorem 9.2.

10. Pushouts and pullbacks for t-modules and their applications

In this section we study pullbacks and pushouts in the category of t-modules. For
definitions and basic properties of these the reader is advised to consult [M78]. In what

follows by [(1)] we mean the map of t-modules (¢, GT) < (X, G™*") which on un-

derlying group schemes is given by the injection G = (0" x G™ < G™*". Similarly,
by [1 0} we denote the map of t-modules (X, GTt™) — (¢, G?) which on underlying

group schemes is given by the surjection G+t — G x 0™ = G. So that in the category
of F,[t]-modules pullbacks and pushouts exist follows from the fact that this category is
abelian. In the next theorem we show that they exist in the category of t-modules and
can be nicely described in the language of biderivations.

Theorem 10.1. Let

0: 0—F —X—FE—0
be a short exact sequence of t-modules, given by the biderivation §. Then

(7) for each morphism of t-modules g : G — E, the pull-back of 6 by g is a t-module,
given by the biderivation § - g,

(it) for each morphism of t-modules f : F — G, the push-out of 6 by f is a t-module,
given by the biderivation f - 0.

Proof. The sequence § has the following form:
0
1] _[1 0]
6: 0—F—>X — FE—0, (10.1)

where F' (resp. E) is given by the map ¥ : F,[t] — Mat.(K{7}) (resp. ® : F,[t] —
Matg(K{7})) and X is given by the following block matrix:

® 0

5w 1 Fy[t] — Matepq(K{7}).

Proof of part (i): Let G be given by = : F4[t] — Mat,(K{7}). We claim that the
following diagram
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is commutative with exact rows, where Y is given by the map:

Z 0
6-g ¥

It is obvious, that the rows are exact, and it is easy to see, that the two squares are

1 Fy[t] — Mateyq(K{7}).

commutative. We will check that the middle vertical map is a morphism of t-modules.

gO.EO_gEO g 0
0 1 §-g U| |59 U 0 1]’

where g= = ®¢g because g is a morphism of t-modules.

® 0
o v

It remains to show that the universal property for a pullback holds true. So, assume
that there is a t-module Y with the morphisms of t-modules o : ¥ — G and § =

B1 B1
B2 B2

: Y — X such that go = [1 0] l ] . We claim that there is a morphism of

t-modules v = M. ¥ 5 Y such that
Y2
[1 0] M| _f and |9 Ol [n|_|A .
V2 0 1] |7 B2
It is easy to see, that v = @ | satisfies the above conditions. Therefore Y is the

B2
pullback given by the biderivation ¢ - g.
Proof of part (i7): Let G be given by E : F,[t] — Mat, (K{7}). It is easy to check
that the following diagram:
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is commutative with exact rows, where Y is given by the following map:

[ f‘i_’ 5 2]  Fy[t] — Matera(K{r}).
The proof of the universal property for a pushout is similar to that for a pullback
presented in part (z). O

Remark 10.1. Notice that from Theorem 10.1 it follows that the multiplication by a €
FF,[t] of the short exact sequence § € Ext!(®, W) is given by the pullback of the sequence
0 by the map ®, : & — & or equivalently by the pushout of the sequence ¢ by the map
U, : ¥ — U

Let A be a ring, 0 - A - B — C — 0 an exact sequence of A-modules and D
a A-module. It is a standard result in homological algebra (cf. [M95, Theorem 3.4] or
[HS71, Theorem 5.2]) that one has a six term exact sequence called Hom — Ext sequence
in the second variable:

0 — Homy (D, A) 25 Homy (D, B) X5 Homy (D, C) —

2% Exty (D, A) =5 Ext} (D, B) = Ext(D,C). (10.2)

Dually, one has the following Hom — Ext sequence in the first variable:

0 — Homy (C, D) =5 Homa (B, D) =% Homy (A, D) =2

s Ext (¢, D) 25 Ext! (B, D) 25" Ext} (4, D). (10.3)

These sequences in general can be continued by higher Ext bifunctors. However, if A
is a P.I.D. (or more generally a Dedekind ring) the last maps in (10.2) and (10.3) are
surjections [HS71, Corollary 5.7], [I59].

For exact sequences in the category of t-modules we obtain analogous exact sequences
of F[t]-modules.
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The following example shows that in general for t-modules (F, ®) and (F, ¥) we have
Hom, (F, E) C Homg, 1(Ga(K), Ga(K)).

Example 10.2. Let ¢ be a Drinfeld module of rank r defined over K = F,(¢) i.e. ¢, =
Yo', a; € Fyt]. It is well-known that Hom, (¢, ¢) is a projective F,[t]-module of
rank at most r (cf. [Th04]). However, the Mordell-Weil group ¢(K) = K of ¢ as an
F,[t]-module is a direct sum of a finite torsion module and a free [F,[t]-module on R
generators (cf. [P95]) This shows that Hom, (¢, ¢) C Homg, ((Gu(K), Gu(K)).

The following theorem gives an explicit description of the corresponding six term
exact sequences:

Theorem 10.2. Let
§: 0—F-S5 X E—0
be a short exact sequence of t-modules given by the biderivation 6 and let G be a t-module.

(i) There is an exact sequence of Fy[t]-modules:

0 — Hom, (G, F) oy Hom, (G, X) ™5 Hom, (G, E) —
2% ExtL (G, F) =5 Ext} (G, X) =% Ext!(G,E) — 0.
(13) There is an exact sequence of Fy[t]-modules:

0 — Hom,(E, G) =3 Hom, (X, G) =% Hom, (F,G) =%

S Ext (E,6) 5 Extl (X, 6) 25 Ext!(F,G) — 0.

Proof. We will give a proof of part (). The proof for part (i7) is similar and is left to
the reader.

Recall that i = (1) , T = [1 O} and t-modules F', F and X are given by the maps
U : F,[t] — Mat.(K{7}), @ : F,[t] — Maty(K{7}) and

® 0

5 g | ¢ Falt] — Matea(K{T)).

Assume that G is given by = : F,[t] — Mat, (K{7}). The exactness at Hom.(G, F),
Hom, (G, X) is obvious from the form of maps 7 and .

h

: G — X be a map of
f2

Now we consider the exactness at Hom, (G, E). Let

t-modules. Hence there is an equality:
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Hil=_|® 0||A
Ja o W]/
This implies
fi2=®f; and fo=E= (5f1 + W fs. (104)

We will prove, that an exact sequence given by the biderivation:

f1 i
50#0[f2‘| :50[1 O}O[f2‘| =dof1=40f

splits. Consider the following diagram:

Of: 0 F Y G 0

where the lower row is given by the biderivation ¢ f1, i.e. Y is defined by the map:

= 0
ofr U

It is easy to see, that this diagram is commutative, with exact rows. From (10.4) the

: Fylt] — Matey (K{7}).

middle vertical map is a morphism of t-modules that is also an isomorphism. Therefore
the sequence 6 f1 splits.

On the other hand, assume that for some morphism of t-modules f; : G — E the
sequence given by the biderivation §f; splits. Therefore df; € Der;, (2, ¥), so there is
U € Mateq,(K{7}) such that

6fy =6 =U= - oU. (10.5)
Then f = [J; : G — X is a morphism of t-modules. Indeed
Ll _ | A= _ P f1 _|® 0||A
Uul~ =) 5f1+ WU § v||U
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where the second equality follows from (10.5) and the fact that f; : G — FE is a

= f1, which shows exactness at

morphism of t-modules. Hence 7o f = [1 0} 2

Hom, (G, E).

For the exactness at Extl(G, F) let f : G — F be a morphism of t-modules. We will
prove that the extension given by the biderivation —id f splits. Recall that J f determines
the following short exact sequence:

0—F—Y —G—0,

where Y is defined by the map:

= 0
5f W

Then the biderivation —id f determines the following short exact sequence:

: Fg[t] — Mat, o (K{7}).

O—>X—>}?—>G—>O,

where Y is defined by the map:

0 X Y X 0,
1 00
- —f 1 0 -
0 01
0 X Go X G 0
0 1 0]
1
1 00
is commutative and the map | —f 1 0| is an isomorphism of t-modules. Therefore
0 01

the sequence —id f splits.
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Now consider the exact sequence:
n: 0—F—Y —G—0¢cExt}(G,F),
where Y is given by the map

—_
—
[

) :Fy[t] — Mat,, (K {7}),

and assume that the sequence
—ionp: 0— X —Y — G —0¢€Ext (G, F)

splits, where Y is defined by the map

0 0
O 0| :F,[t] — Mat, . (K{7}).
5 U

® 0

Because —1i o ) splits, then the biderivation —¢ o n € Der;, (E, 5w

) . Hence, there

isU =
U2

2o

Therefore u; is a morphism of t-modules and

u1] € Matetaxr(K{7}) such that

¢ 0
o v

[1]

U1 UlE. — (I)’I,Ll
U2 U2E — 511,1 — \I/’Z,LQ

n=0uy + Yus — ugZ = duy — (qu — \I/uQ) = Sug — 642,
[
—=§(u2)

Thus the biderivations 7 and du; determine the same extension in Ext! (G, F), which
shows the exactness at Extl(G, F).
Now we consider exactness at Ext!(G, X). For ) € Ext(G, F) there is an equality

—7TO<—iO77) =moi(n) =0.

Hence the sequence given by the biderivation — o ( —40 17) splits.

Uit

On the other hand assume, that n = [
M2

1 is the biderivation determining the exact

sequence from Exti (G, X), such that —m o gives a split sequence in Exti (G, E). Then
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—mTon=— {1 0} o [771] = —1; € Der;,(E, D).
12

Thus there is u € Matgy,(K{7}) such that —n; = 6*) = uZ= — du. We put U =

® 0 )has

o v

€ Matgiex(K{7}). Then the inner biderivation W) € Der;y, (E,
the following form:

(u)
O _ |%|=_ _ |0
Therefore

—5) 5 0 0
n+46 [ - ] + [—5u‘| |‘772 —ou 11° (5u 7]2) io (6u—m2).

Thus the sequence corresponding to 7 is given by the biderivation —i o (6u — 772). This

ul| uz — du
0| —ou

—To—

proves the exactness at Ext!(G, X). Now we will prove that the map: Ext} (G, X) ™%
Ext!(G, E) is a surjection.

0

1] [1 0]

Let
vy 0—FE—Y — G—0, (10.6)

be an element of Ext! (G, F) where Y is given by the following map:

20
v v

Then there exists the following commutative diagram with exact rows:

: Fy[t] — Mates, (K{r}). (10.7)

00
10
01 1 0]
0 X Z G 0, (10.8)
1 0 0
-1 0] [0 ~1 0} N
0 E Y G 0
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where Z is given by the following map:

[1]

1 Fy[t] = Mateq g (K{7}).

|
2
S B O
Ko o

Notice that

= 0|1 0 O
0% 0 -1 0

Thus (10.8) is the diagram of morphisms of t-modules and <_07> — 7, where <_07>

is the extension given by the upper row of (10.8). O

Remark 10.3. In the Theorem 10.2 we assumed that the short exact sequence is given
by the biderivation § and in the result we obtained simple formula for the morphism
from Hom, to Extl. In the case where the short exact sequence is not given by the
biderivation, but it is isomorphic to a sequence given by the biderivation, the six-term
exact sequences exist. The aforementioned isomorphism of short exact sequences induces
the isomorphism of the corresponding six-term sequences.

We finish this section with the application of the six-term exact sequence.

Example 10.4. Let F' (resp. E) be a Drinfeld module given by ¢; = 6 + 72 (resp. ¢, =
6 + 72) and consider the exact sequence of t-modules

0—>F—-X—FE—D0, (10.9)

where X is the extension given by the biderivation §; = 1 4+ 7 i.e. X is the t-module
0+ 72 0

147 60+73
Since rk F' > rk C' we have Hom, (F,C) = 0 and from the six-term exact sequence we

given by I'y = . Let C be the Drinfeld module given by 7, = 6 + 7.

obtain the short exact sequence:

0 — Ext}(E,C) — Ext}(X,C) = Ext}(F,C) = 0 (10.10)
One readily verifies that Ext!(FE,C) (resp. Ext:(F,C)) is the t-module given by ¥, =
6 0 0
0
l 0 o | (resp. @y = |7 6 72]).
T 0+71
0 7 6
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We have:
Ext!(X,C) = Der(X, C)/Derj,(X, C) (10.11)
- K{T}2/<5[CT'“7 0] 5l0, ]| ek ke ZZO>,
where

0+ 72 0

1+7 6+73 _(6+T>{C7—k’ O}

:[5(ka), 0} where 6(CTk)EDerm(E,C’)

0+ 712 0

51 CTk]:[O’ CTk} 1+7 6O+73

—O+7) {O, crk}

= |:CTk +erhtl, 5(”%} where §7) € Der;, (F, C)

0, CTk}

Thus first reducing the second coordinates by the elements (5[ and then the

[CT’“, O}

first coordinates by § one can see that:

Ext!(X,C) = {[co +cT, do+diT+ d272] | ¢;,d; € K} (10.12)

Enumerating the basis elements of (10.12) lexicographically i.e.

o 1] o+ o @) o) o <]

and computing ¢ * {0, d; ~7i] ,i=0,1,2 and t % [cz- i, 0] ,i=0,1, in a similar to
that in Section 4 way, one obtains that Ext} (X, C) is a t-module defined by the matrix:

6 0 0 O 0
T 0 72 0 0
Q=10 7 6 0 0 (10.13)
0 0 —7 0 0
0 0 -7 7 0+72
Therefore
d, 0
10.14
A, | ( )
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00 —7
0 0 -7

sion of t-modules.
Change of d; in (10.9) to §; = 1 + 73 results in the change of A, in (10.14). For the

0 0 -7
00 (0—60W)r+7*

where Ay = . Thus we showed that the exact sequence (10.10) is an exten-

new data A; =

Similar arguments to that in the proof of Proposition 5.1, show that the following
assertions hold true.

Proposition 10.3. Let 0 — F — X — E — 0 be an exact sequence of t-modules,
where F' and E are Drinfeld modules, and let G be a Drinfeld module.

(i) IfrtkG <1k F' and vk G < rk E, then there is a short exact sequence of t-modules
0 — BExt!(F,G) — Ext!(X,G) — Ext(F,G) — 0.
(iP) If tkG > 1k F and vk G > tk E, then there is a short ezact sequence of t-modules
0 — Ext}(G, F) — Ext}(G, X) — Ext}(G, E) — 0.
As an immediate consequence of the Theorem 5.3 we obtain the following theorem:

Theorem 10.4. Let 0 — F — X — E — 0 be an exact sequence of t-modules, where
F and E are Drinfeld modules, and let G be a Drinfeld module.

(1) If tkG <tk F and tk G < vk E, then there is a short exact sequence of t-modules
0 — Exto - (X,G) — Ext}(X,G) — G2 — 0.

(iP) If kG > 1k F and vk G > tk E, then there is a short ezxact sequence of t-modules
0 — Exto, (G, X) — Ext}(G, X) — G2 — 0.

Remark 10.5. In the case where K is perfect, one can prove the corresponding “t?-
versions” of the Proposition 10.3 and Theorem 10.4.

11. Extensions of dual t-motives

Now, recall the notion of a dual t-motive (cf. [BP20]).

Definition 11.1. Let K be a perfect field and let K[t, o] be the polynomial ring satisfying
the following relations:
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te=ct, to=ot, oc=c Vo, cekK. (11.1)

A dual t-motive is a left K|[t,o]-module that is free and finitely generated over K{o}
and for which there exists an [ € N such that (t — 0)!(H/ocH) = 0. A morphism of dual
t-motives is a morphism of K[t, o]-modules.

For a t-module ® — Maty(K{7}) let H(®) = Matyy4(K{o}) i.e. a free K{7}-module
on d generators. Equip H(®) with the following F,[t]-action:

a-h=h®7, for heH®), acTF, (11.2)

Every morphism of t-modules f : & — ¥ induces a morphism of dual t-motives
H(f): H(®) — H(¥) defined by the following formula:

H(f)(h)=h-f° for he H(®). (11.3)

Vice versa every morphism of dual t-motives g : H(®) — H(¥) comes from a morphism
of t-modules.
From H(®) one can recover ® as:

H(®)

V@) >~ (®, K% (11.4)

The following theorem was proved by G. Anderson.

Theorem 11.1 (Anderson). The correspondence between dual t-motives and t-modules
over a perfect field K gives an equivalence of categories.

Definition 11.2. We call a sequence of dual t-motives:
0— H(V)— H(E) — H(®) — 0, (11.5)

exact if it is exact as a sequence of F[t]-modules. The space of all exact sequences (11.5)
for fixed ¥ and ¢ will be denoted as Ext}\,ttv (H(®),H(D)).

Similarly as in the case of t-modules the space Ext}\/[tv can be endowed with the
structure of an [F4[t]-module, where the multiplication by an element a € F,[t] is given
by the pushout of the map H(¥,) : H(V) — H(¥), (cf. Remark 10.1.)

In general an equivalence of categories need not preserve exact sequences, so an iso-
morphism of corresponding spaces of extensions is not an obvious fact. However, we have
the following:

Theorem 11.2. Let & and ¥ be t-modules. Then there exists an isomorphism of F[t]-
modules:
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Exty (®, W) = Extyy (H(®), H(V)). (11.6)

Proof. Let ® be a t-module and let h = [wi(0),...,wa(0)] € H(P), where w;(c) =
diiaijot. Then
max{n;} . 0o ‘
h = [wi(0),...,wa(0)] = Z [a1j,...,aq;]07 € @Kdaj.

J=0 J=0

Thus every dual t-motive H(®), as an F,[t]-module, can be viewed as an element of the
space @;o,(K?);, where the action of a € F,[t] on the i-th component is given by the
following formula:

a-k=ko'®, for ke (K%; and a€ A (11.7)

Notice that every component (K9); with the action (11.7) is an F,[t]-module.
So we see that starting with the exact sequence of t-modules

0— (U,K° — (B, K¢ - (&, K%) =0
one obtains exact sequences of Fy[t]-modules
0 — (K%, — (K°¢); — (K¢); — 0 forall i=0,1,2,...

Exactness follows from the formula (11.7). Thus we get an exact sequence of F[t]-
modules

e dy . > d+ey . o ey
0— ®i:0(K )i — @i:O(K )i — @Z_:O(K )i — 0 (11.8)
which in turn yields an exact sequence:
0— H(¥) — H(E) — H(®) — 0.

So, H(—) preserves exact sequences.
Now assume that we have an exact sequence of dual t-motives

0— H(F)— HE)— H(E) —0.
One easily verifies that the induced sequence:

H(F) H(E) H(E)
" evEE  G-VHE | @-nHE)

is an exact sequence of Fy[t]-modules.
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From the definition of Fy[t]-module structure on Ext}\,[tv, taking into account Theo-
rem 10.1 and Remark 10.1, it easily follows that H(—) induces an F,[t]-module isomor-
phism:

Ext; (®, V) = Exty, (H(®), H(¥)). O
We also have the following theorem for dual ¢-motives:

Theorem 11.3. Let 0 — My — M — My — 0 be an exact sequence of dual t-motives and
let N be a dual t-motive.

(i) There is an exact sequence of Fy[t]-modules:

0 — Hom v (N, My) — Hompgy (N, M) — Hom qy (N, Ma) —
— Extjy (N, My) — Bxtgy (N, M) — Extjy (N, Mp) — 0.

(17) There is an exact sequence of Fy[t]-modules:

0 — Hom v (M2, N) — Homay (M, N) — Hom gy (M, N) —
— Extjyy (Mg, N) — Extjyv (M, N) — Extj (M1, N) — 0.

Proof. Pick t-modules ®,, ®, ®5 and ¥ such that
M, 2 H(®), MZ=ZH(®) M;=H(®). and N = H(D). (11.9)

This is possible by Theorem 11.1. Now follow the proof of the Theorem 10.2 for the
t-modules @1, P, 5 and ¥ and finally apply the functor H again. O
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