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Let A = Fq[t] be the polynomial ring over a finite field Fq

and let φ and ψ be A-Drinfeld modules. In this paper we 
consider the group Ext1(φ, ψ) with the Baer addition. We 
show that if rankφ > rankψ then Ext1(φ, ψ) has the structure 
of a t-module. We give complete algorithm describing this 
structure. We generalize this to the cases: Ext1(Φ, ψ) where 
Φ is a t-module and ψ is a Drinfeld module and Ext1(Φ, C⊗e)
where Φ is a t-module and C⊗e is the e-th tensor product of 
Carlitz module. We also establish duality between Ext groups 
for t-modules and the corresponding adjoint tσ-modules. 
Finally, we prove the existence of “Hom− Ext” six-term exact 
sequences for t-modules and dual t-motives. As the category 
of t-modules is only additive (not abelian) this result is 
nontrivial.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Drinfeld modules since their discovery [D74] gained a lot of attention in arithmetic 
algebraic geometry because of their numerous applications e.g. in class field theory, in 
Langlands conjectures, theory of automorphic forms or Diophantine geometry (see [G96], 
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[Th04] or [F13]). There is a deep analogy between the theory of Drinfeld modules over 
function fields and theory of elliptic curves over number fields or more generally between 
t-modules and abelian varieties over number fields (see [BP20]). This analogy justifies 
various attempts to use the theory of Drinfeld modules in cryptology (see [G03], [N19]).

There are also some significant differences. For example the Mordell-Weil groups of 
t-modules are not finitely generated [P95]. The category of Drinfeld modules as well as 
the category of t-modules are not semisimple i.e. there are non-trivial extensions.

Remark 1.1. Since in this paper we consider Ext groups in several different categories, 
we indicate the appropriate category by a subscript τ, Fq[t] or σ.

Let Ext1τ (B, A) be the Baer group of extensions of t-modules i.e. the group of exact 
sequences

0 → A → M → B → 0 (1.1)

with the usual addition known from homological algebra (cf. [M95]).
Let φ and ψ be Drinfeld modules. In this paper we study the group Ext1τ (φ, ψ). It turns 

out that sometimes we can endow the extension group Ext1τ (A, B), for certain specific t-
modules, with a t-module structure. In our study we apply the method (used in [PR03]) 
of expressing the elements of Ext1τ (φ, ψ) by certain classes of biderivations. This idea was 
originally introduced by G. Hochschild in his thesis for the study of extensions (the first 
Hochschild cohomology groups) of associative algebras. It is worth mentioning that the 
concept of describing an extension space as a cokernel of a line map was used by C.M. 
Ringel for modules over path algebra of a quiver or more generally for K-species [R76], 
[R98]. The content of the paper is as follows. In Section 2 we recall basic definitions and 
properties of Drinfeld modules and t-modules. In Section 3 we identify the Ext1τ (φ, ψ)
for Drinfeld modules satisfying rkφ > rkψ with some Fq-subspace of the ring of skew 
polynomials K{τ}. In Section 4 we compute an example which show how to endow 
Ext1τ (φ, ψ) for the case rkφ > rkψ with the structure of a t-module. Section 5 is devoted 
to the proof of general case i.e. that Ext1τ (φ, ψ) is in the considered case a t-module. 
In the proof of Proposition we describe a recursive step which is sufficient for finding 
the exact formulas or designing a computer program. In Section 6 we generalize the 
results from Section 5 to certain t-modules that are products of Drinfeld modules. A 
brief discussion of the remaining cases i.e. rkφ ≤ rkψ is included in Section 7 where also, 
for a perfect field K, a duality between t-modules and tσ-modules is established. The 
Duality Theorem (Theorem 7.2) allows one to describe Ext1τ (φ, ψ) for rkφ < rkψ as an 
Fq(t)-module. In Section 8 we discuss Ext1τ (Φ, ψ) where Φ is a t-module, ψ is a Drinfeld 
module and rkΦ > rkψ. In Section 9 we describe Ext1τ (Φ, C⊗e) for a t-module Φ such 
that rk Φ ≥ 2 and the e-th tensor power of the Carlitz module C. In Section 10 we 
prove directly the existence of pullbacks and pushouts in the category of t-modules. We 

also prove existence of the six-term “Hom− Ext” exact sequences, where the last map is 
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surjective. As the category of t-modules is not an abelian category these are nontrivial 
results (cf. Example 10.2). We conclude this section with some consequences of the six-
term exact sequences (Proposition 10.3 and Theorem 10.4). In Section 11 we discuss 
briefly the category of Anderson dual t-motives (over a perfect field) in the context of 
Ext1 bifunctor.

2. Preliminaries

Let p be a rational prime and A = Fq[t] the polynomial ring over the finite field with 
q = pm elements and let K be a field of characteristic p. We say that K is an A-field
when we fix an Fq-linear homomorphism ι : A → K with θ := ι(t). Denote by K{τ}
the ring of twisted polynomials in τ with coefficients in K i.e. satisfying the additional 
relation τx = xqτ for x ∈ K, see [G96].

In [A86] G. Anderson developed a generalization of the notion of a Drinfeld module 
called a t-module.

Definition 2.1. A d-dimensional t-module over an A-field K is an Fq - algebra homomor-
phism

Φ : Fq[t] → Matd(K{τ}), (2.1)

such that Φ(t), as a polynomial in τ with coefficients in Matd(K) is of the following form

Φ(t) = (θId + N)τ0 + M1τ
1 + · · · + Mrτ

r, (2.2)

where Id is the identity matrix and N is a nilpotent matrix.

In general, a t-module over K is an algebraic group E defined over K and isomorphic 
over K to Gd

a together with a choice of Fq-linear endomorphism t : E → E such that 
d(t −θ)nLie(E) = 0 for n sufficiently large. Notice that in the last equality d(·) denotes the 
differential of an endomorphism of the algebraic group E. The choice of an isomorphism 
E ∼= Gd

a is equivalent to the choice of Φ. In order to indicate this choice of coordinates, 
we write E = (Gd

a, Φ).

Remark 2.1. Since the map Φ is a homomorphism of Fq-algebras a t-module is completely 
determined by the polynomial Φt i.e. by the image of t. In the sequel, for a t-module Φ, 
we will use the notations Φ(t) and Φt interchangeably.

The degree r of Φt is called the rank of Φ and it is denoted as rk Φ.

Remark 2.2. Notice that this definition of a rank is not the usual one. In fact, usually 
the rank of Φ is defined as the rank of the period lattice of Φ as a dΦ(A)-module (cf. 
[BP20, Section t-modules]). Since our paper concerns the algebraic site of the theory of 

t-modules the adapted by us equivalent definition of rank seems more convenient.



100 D.E. Kędzierski, P. Krasoń / Journal of Number Theory 256 (2024) 97–135
Definition 2.2. Let Φ and Ψ be a two t-modules of dimension d and e, respectively. A 
morphism f : Φ −→ Ψ of t-modules over K is a matrix f ∈ Matd×e(K{τ}) such that

fΨ(t) = Φ(t)f.

In general, if E = (Gd
a, Φ) and F = (Ge

a, Ψ), then a t-module morphism f : F → E is 
a morphism of commutative algebraic groups f : Ge

a → Gd
a over K commuting with the 

action of A i.e.:

fΨ(t) = Φ(t)f.

The set of all morphisms f : F → E will be denoted as Homτ (F, E). We decided to 
add the subscript τ for the consistency with the notation used for the group of extensions 
i.e. Ext1τ (F, E).

Every t-module E = (Gd
a, Φ) induces an Fq[t]-module structure on Kd, where multi-

plication by t is given by evaluation of Φt, i.e.

t ∗ x = Φt(x) for x ∈ Kd.

This Fq[t]-module is called the Mordell-Weil group of Φ and it is denoted as Φ(Kd). Simi-
larly, each morphism f : E = (Gd

a, Φ) −→ F = (Ge
a, Ψ) of t-modules induces a morphism 

Φ(f) : Φ(Kd) −→ Ψ(Ke) of Fq[t]-modules. Then Φ(−) is a covariant inclusion functor 
from the category of t-modules to the category of Fq[t]-modules. In the Example 10.2
we will see that this functor is not full.

Dimension one t-modules are called Drinfeld modules and the Drinfeld module C :
Fq[t] −→ K{τ}, given by the formula C(t) = θ + τ is called the Carlitz module.

We also consider the zero t-module of the form 0 : Fq[t] −→ 0. Then the category 
of t-modules becomes an Fq[t]-linear additive category and the notion of a short exact 
sequence (1.1) makes sense.

Recall from [PR03], that each extension of a t-module Φ : Fq[t] −→ Matd(K{τ})
by Ψ : Fq[t] −→ Mate(K{τ}) can be determined by an Fq-linear map δ : Fq[t] −→
Mate×d(K{τ}) such that

δ(ab) = Ψ(a)δ(b) + δ(a)Φ(b) for all a, b ∈ Fq[t]. (2.3)

Such maps are called biderivations, and we will denote the Fq-vector space of all 
biderivations by Der(Φ, Ψ). In the sequel we will, as usual, denote Φa := Φ(a), Ψa :=
Ψ(a) etc. It is easy to check that the biderivation δ is uniquely determined, by the value 
δ(t) ∈ Mate×d(K{τ}). Then the map δ �→ δ(t) induces the Fq-linear isomorphism of the 
vector spaces Der(Φ, Ψ) and Mate×d(K{τ}). Let δ(−) : Mate×d(K{τ}) −→ Der(Φ, Ψ) be 
an Fq-linear map defined by the following formula:
δ(U)(a) = UΦa − ΨaU for all a ∈ Fq[t] and U ∈ Mate×d(K{τ}).
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The image of the map δ(−) is denoted by Derin(Φ, Ψ), and the elements of Derin(Φ, Ψ)
are called inner biderivations. In addition, both Ext1τ (Φ, Ψ) and Der(Φ, Ψ)/Derin(Φ, Ψ)
have Fq[t]-module structures. Then from [PR03, Lemma 2.1] there is an Fq[t]-module 
isomorphism

Ext1τ (Φ,Ψ) ∼= cokerδ(−) = Der(Φ,Ψ)/Derin(Φ,Ψ). (2.4)

Because the map δ �→ δ(t) is an isomorphism, we will identify the coset δ+Derin(Φ, Ψ)
with the coset δ(t) + Derin(Φt, Ψt) in Mate×d(K{τ}), where Derin(Φt, Ψt) =

{
δ(t) | δ ∈

Derin(Φ, Ψ)
}
.

Remark 2.3. In what follows we adopt the following notation: c(i) := cq
i is the evaluation 

of the Frobenius twist τ i on an element c ∈ K. In particular c(0) = c.

3. Extension of Drinfelds modules with t-modules structures

In this section we study extensions of Drinfeld modules using biderivations. Our aim 
is to equip the extension space Ext1τ (φ, ψ) with the natural t-module structure. This is 
generalization of M.A. Papanikolas and N. Ramachandran results concerning the case 
where ψ is the Carlitz module. Further, we will give some basic properties of these 
t-modules.

Lemma 3.1. Let φ and ψ be Drinfeld modules, such that rkφ > rkψ. Then there is an 
Fq-linear isomorphism

Ext1τ (φ, ψ) ∼= K{τ}<rkφ :=
{
w ∈ K{τ} | degτ w < rkφ

}
Proof. We will identify the biderivation δ with the polynomial w(τ) = δ(t) ∈ K{τ}. Let 
φt = θ +

n∑
i=1

aiτ
i and ψt = θ +

m∑
j=1

bjτ
j , then n > m. From isomorphism (2.4) it suffices 

to show that Der(φ, ψ)/Derin(φ, ψ) ∼= K{τ}<rkφ. To prove this, we consider generators 
of the space Derin(φ, ψ) of the form δ(cτk) where k = 0, 1, 2, . . . and c ∈ K. We have:

δ(cτk)(t) = cτkφt − ψtcτ
k = cτk

(
θ +

n∑
i=1

aiτ
i
)
−
(
θ +

m∑
j=1

bjτ
j
)
cτk

= cθ(k)τk +
n∑

i=1
ca

(k)
i τ i+k − cθτk −

m∑
j=1

c(j)bjτ
j+k

= c(θ(k) − θ)τk +
m∑(

ca
(k) − c(j)bj

)
τ j+k +

n∑
ca

(k)
τ i+k
j=1
j

j=m+1
i
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= c(θ(k) − θ)τk +
m+k∑
j=k+1

(
ca

(k)
j−k − c(j−k)bj−k

)
τ j +

n+k∑
j=m+k+1

ca
(k)
j−kτ

j . (3.1)

Because degτ δ(cτk)(t) = n + k for c 	= 0, each non-zero inner biderivation is given by 
a polynomial with τ -degree greater or equal to n. Therefore, if w, ŵ ∈ K{τ}, w 	= ŵ

are such that degτ w < n and degτ ŵ < n, then w and ŵ represent different cosets in 

Der(φ, ψ)/Derin(φ, ψ). On the other hand given a polynomial w(τ) =
n+l∑
i=1

aiτ
i ∈ K{τ}

with l > 0, one can find cl (cf. (3.1)) such that the polynomial w(τ) − δ(clτ l) has τ -
degree at most n + l − 1 and represents the same class as w in Der(φ, ψ)/Derin(φ, ψ). 
By downward induction we obtain:

w̃(τ) = w(τ) − δ(clτ l) − · · · − δ(c1τ1) − δ(c0)

where degτ w̃ < n and both w and w̃ represent the same coset.
Therefore the isomorphism δ �→ δ(t) induces the isomorphism of Fq-vector spaces 

Der(φ, ψ)/Derin(φ, ψ) ∼= K{τ}<rkφ. �
Corollary 3.2. Let δ ∈ K{τ}<rkφ then δ corresponds to the extension:

0 → ψ → Γ → φ → 0 (3.2)

where Γ is given by the matrix Γt =
[
φt 0
δ ψt

]
. Moreover, this correspondence is 

compatible with the Baer sum of extensions i.e. if δ1, δ2 ∈ K{τ}<rkφ correspond to 

Γ1
t =

[
φt 0
δ1 ψt

]
and Γ2

t =
[
φt 0
δ2 ψt

]
respectively then the Baer sum of extensions Γ1 and 

Γ2 corresponds to Γ such that Γt =
[

φt 0
δ1 + δ2 ψt

]
. �

Remark 3.1. Notice that Ext1τ (φ, ψ) is a reflexive bilinear space with the bilinear product 
< δ1, δ2 >=

∑n−1
i=0 aibi where δ1 = a0 + · · · + an−1τ

n−1 and δ2 = b0 + · · · + bn−1τ
n−1.

Let φ and ψ be Drinfeld modules and let r := rkφ −rkψ > 0. Recall from [PR03] that 
the structure of the Fq[t]-module on Der(φ, ψ)/Derin(φ, ψ) is defined by the following 
formula:

a ∗
(
δ + Derin(φ, ψ)

)
:= ψaδ + Derin(φ, ψ) (3.3)

for a ∈ Fq[t] and δ ∈ Der(φ, ψ).

Remark 3.2. For simplicity, we omit the notation +Derin(φ, ψ) when considering the 

coset δ + Derin(φ, ψ) in the space Der(φ, ψ)/Derin(φ, ψ).
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4. An easy but essential example

In this section we give an example to illustrate how to determine the structure of a 
t-module on the space of extensions of Drinfeld modules.

Example 4.1. Let φt = θ + τ3 and ψt = θ + τ2. By Lemma 3.1

Ext1τ (φ, ψ) ∼= K{τ}<3 = {c0 + c1τ + c2τ
2 | ci ∈ K}.

In order to equip Ext1τ (θ + τ3, θ + τ2) with the t-module structure we will transfer the 
structure of the Fq[t]-module from Ext1τ (θ + τ3, θ + τ2) to the space K{τ}<3 via the 

isomorphism from Lemma 3.1. Since each element of K{τ}<3 is of the form 
2∑

i=0
ciτ

i, 

it is sufficient to determine the value of multiplication by t on the generators ciτ i for 
i = 0, 1, 2, where ci ∈ K.

From (3.3) the value t ∗ (c0) can be computed in the following way:

t ∗ (c0) = ψt · c0 =
(
θ + τ2) · c0 = θc0 + c

(2)
0 τ2

Similarly,

t ∗ (c1τ) = ψt · c1τ =
(
θ + τ2) · c1τ = θc1τ + c

(2)
1 τ3.

Because the polynomial θc1τ + c
(2)
1 τ3 does not belong to K{τ}<3, like in the proof of 

the Lemma 3.1, we reduce the term c(2)1 τ3 by the generator

δ(c)(t) = cφt − ψtc = c(θ + τ3) − (θ + τ2)c = −c(2)τ2 + cτ3

for c = c
(2)
1 . Then

t ∗ (c1τ) = θc1τ + c
(2)
1 τ3 − δ(c) = θc1τ + c

(4)
1 τ2.

Next,

t ∗ (c2τ2) = ψt · c2τ2 =
(
θ + τ2) · c2τ2 = θc2τ

2 + c
(2)
2 τ4.

The term c(2)1 τ4 can be reduced by the generator

δ(cτ)(t) = cτφt − ψtcτ = cτ(θ + τ3) − (θ + τ2)cτ

= −c
(
θ(1) − θ

)
τ − c(2)τ3 + cτ4,

for c = c
(2)
2 . Therefore ( )
t ∗ (c2τ2) = t ∗ (c2τ2) − δ(cτ) = c
(2)
2 θ − θ(1) τ + θc2τ

2 + c
(4)
2 τ3.
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The term c(4)2 τ3 can be reduced by the generator δ(c) for c = c
(4)
2 . Hence

t ∗ (c2τ2) = t ∗ (c2τ2) − δ
(
c
(2)
2 τ

)
− δ

(
c
(4)
2
)

= c
(2)
2
(
θ − θ(1))τ +

(
θc2 + c

(6)
2

)
τ2.

Now, choose the basis e0 = 1, e1 = τ, e2 = τ2 in K{τ}<3. In this basis the value t ∗ (c0)
has the following coordinates

t ∗ (c0) = θc0 + c
(2)
0 τ2 =

[
θc0, 0, c(2)0

]
.

Notice that c(2)0 is the value of the polynomial τ2 at c0. Let τ2 |c0 := c
(2)
0 . Then we can 

express t ∗ (c0) in the following form

t ∗ (c0) =
[
θ, 0, τ2]

|c0 .

In a similar way we obtain:

t ∗ c0 = c0θ + c
(2)
0 τ2 = [θ, 0, τ2]|c0

t ∗ c1τ = c1θτ + c
(4)
1 τ2 = [0, θ, τ4]|c1

t ∗ c2τ2 = c
(2)
2 (θ − θ(1))τ + (c2θ + c

(6)
2 )τ2 = [0, (θ − θ(1))τ2, θ + τ6]|c2

Then the multiplication by t on K{τ} can be expressed by the following matrix:

Πt =

⎡⎣ θ 0 0
0 θ θ − θ(1)

τ2 τ4 θ + τ6

⎤⎦ (4.1)

This matrix induces the homomorphism of Fq-algebras

Π : Fq[t] −→ Mat3(K{τ}),

such that

Πt = θI3 +

⎡⎣0 0 0
0 0

(
θ − θ(1))

1 0 0

⎤⎦ τ2 +
[0 0 0

0 0 0
0 1 0

]
τ4 +

[0 0 0
0 0 0
0 0 1

]
τ6.

Therefore Π gives rise to a t-module structure on Ext1τ (θ + τ3, θ + τ2).
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5. Ext1τ (φ, ψ) for Drinfeld modules φ and ψ with rkφ > rkψ

We have the following:

Proposition 5.1. Let φ and ψ be Drinfeld modules such that rkφ > rkψ. Then Ext1τ (φ, ψ)
has a natural structure of a t-module. This is given by the map Π : Fq[t] −→
Matrkφ(K{τ}), where

Πt =

⎡⎢⎢⎢⎢⎣
θ 0 . . . 0
δ1
... Π0

t

δn−1

⎤⎥⎥⎥⎥⎦ . (5.1)

At this moment, we will focus on the proof that the t-module structure comes from 
the matrix (5.1). Next we will see that the matrix Π0

t gives rise to a t-module structure 
on Ext10,τ (φ, ψ) and the vector [δ1, · · · , δn−1]t determines the extension of Ext10,τ (φ, ψ)
with Ext1τ (φ, ψ) as the middle term.

Proof. We will describe an algorithm that allows us to determine the structure of the 
t-module on Ext1τ (φ, ψ). From the Lemma 3.1 we know that

Ext1τ (φ, ψ) ∼=
{
c0 + c1τ + · · · + crkφ−1τ

rkφ−1 | ci ∈ K
}

as an Fq-vector space. In order to equip Ext1τ (φ, ψ) with the t-module structure we will 
transfer the structure of the Fq[t]-module form Ext1τ (φ, ψ) = Der(φ, ψ)/Derin(φ, ψ) to the 
space K{τ}<rkφ via the isomorphism from Lemma 3.1. Since each element of K{τ}<rkφ

is of the form 
rkφ−1∑
i=0

ciτ
i, it is sufficient to determine the value of multiplication by t on 

the generators ciτ i for i = 0, 1, . . . , rkφ − 1, where ci ∈ K.
Next we will choose the coordinate system ei = τ i for i = 0, 1, 2, . . . , rkφ − 1 in 

K{τ}<rkφ and see that the matrix Πt of the multiplication map t ∗ (−) : K{τ}<rkφ −→
K{τ}<rkφ gives rise to the t-module structure on Ext1τ (φ, ψ). This structure is given by 
(5.1).

Assume that φt = θ +
n∑

i=1
aiτ

i, ψt = θ +
m∑
j=1

bjτ
j and r := n −m > 0. Then from the 

formula (3.3) we see that

t ∗ (ciτ i) = ψt · ciτ i for ci ∈ K and i = 0, 1, 2, . . . , rkφ− 1.

Suppose that i ∈ {0, 1, . . . , r − 1}. Then

t ∗ (ciτ i) =
(
θ +

m∑
bjτ

j
)
ciτ

i = ciθτ
i +

m∑
bjc

(j)
i τ j+i ∈ K{τ}<rkφ
j=1 j=1
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Hence

t ∗ (ciτ i) =
[ i−1︷ ︸︸ ︷
0, . . . , 0, θ, b1c(1)i , b2c

(2)
i , . . . , bmc

(m)
i , 0, . . . 0

]
=

=
[
0, . . . , 0︸ ︷︷ ︸

i−1

, θ, b1τ, b2τ
2, . . . , bmτm, 0, . . . 0

]
|ci

=

Therefore the first r column of the matrix Πt satisfy our claim.
Consider the case i ∈ {r, r + 1, . . . , rkφ − 1}. In this situation the element ψt · ciτ i

has τ -degree bigger than rkφ − 1, so like in the proof of the Lemma 3.1 we reduce the 
monomial with the biggest τ -degree by the generator δ(cτk) ∈ Derin(φ, ψ) and continue 
this procedure until we get the reduced polynomial belonging to K{τ}<rkφ.

Then we perform downward induction from n + i − r to n and see that at each step 
after the reduction we obtain polynomials satisfying the following properties:

(i) the term at τ0 of the reduced polynomial is equal to zero,
(ii) each coefficient at τ l of the reduced polynomial can be written as the evaluation at 

ci of a skew polynomial wl(τ),
(iii) if l 	= i, then the skew polynomials wl(τ) from (ii) have no free term,
(iv) the skew polynomial wi(τ) has a free term equal to θ.

From (i) we see that the matrix Πt is of the form as claimed. On the other hand (ii)
implies that after the reduction procedure is completed we can present the coefficients in 
the chosen coordinate system ei = τ i, as the values of the skew polynomials in ci. Write 
the matrix Πt in the following form

Πt = (θ · I + N)τ0 +
finite∑
i=1

Aiτ
i, where I,N,Ai ∈ Matrkφ(K).

The condition (iii) implies that the matrix N = 0 and the condition (iv) implies that I
is identity matrix. Therefore Πt yields the t-module structure on Ext1τ (φ, ψ)
Induction: At the start of the induction we consider the following polynomial:

t ∗ (ciτ i) = ciθτ
i +

m∑
j=1

bjc
(j)
i τ j+i, (5.2)

that satisfies conditions (i) − (iv) in an obvious way.
Suppose we have made k reductions that satisfy conditions (i) − (iv). Therefore the 

value t ∗ (ciτ i) after reductions can be written in the following form:

i−r−k+1 i−r−k+2 m+i−k
wi−r−k+1(ci)τ + wi−r−k+2(ci)τ + · · · + wm+i−k(ci)τ ,
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where the polynomials wl(τ) satisfy conditions (i) − (iv). We reduce the term 

wm+i−k(ci)τm+i−k by the generator δ(cτ i−r−k) where c = wm+i−k(ci)
a
(i−r−k)
n

. Because all non-

zero terms of δ(cτ i−r−k) have τ -degree ≥ 1, then (i) is obvious. Recall that from (3.1)
the generator δ(cτ i−r−k) can be rewritten in the following form:

δ(cτ i−r−k)(t) =
m+i−k−1∑
j=i−r−k

pj(ci)τ j + ca(i−r−k)
n︸ ︷︷ ︸

=wm+i−k(ci)

τm+i−k,

where the polynomials pl(τ) ∈ K{τ} satisfy the conditions (i) − (iii). Therefore after 
the reduction by the generator δ(cτ i−r−k) we obtain the following form of t ∗ (ciτ i):

−pi−r−k(ci)τ i−r−k +
m+i−k−1∑
j=i−r−k+1

(
wj(ci) − pj(ci)

)
τ j .

We put ŵi−r−k(τ) = −pi−r−k(τ), ŵj(τ) = wj(τ) −pj(τ) for j = i −r−k+1, . . . , m + i −
k−1. Because the polynomials pl(τ) and wl(τ) satisfy the conditions (i) −(iii) and wi(τ)
satisfy (iv), then the polynomials ŵl(τ) also satisfy these four conditions. This completes 
the induction step, and thus we proved that Ext1τ (φ, ψ) has a t-module structure. �

For A ∈ Matn1×n2(K{τ}) let dA ∈ Matn1×n2(K) be the constant term of A viewed 
as a polynomial in τ . For t− modules Φ and Ψ let

Der0(Φ,Ψ) = {δ ∈ Der(Φ,Ψ) | dδ(t) = 0}. (5.3)

Following [PR03] define Ext10,τ (Φ, Ψ) := Der0(Φ, Ψ)/Der0(Φ, Ψ) ∩Derin(Φ, Ψ). We have 
the following:

Lemma 5.2. Let φ and ψ be the Drinfeld modules, such that r = rkφ − rkψ > 0. Then

(i) there exists an isomorphism of Fq[t]-modules between Ext10,τ (φ, ψ) and K{τ}〈1,rkφ) ={ rkφ−1∑
i=1

ciτ
i | ci ∈ K

}
,

(ii) K{τ}〈1,rkφ) is an Fq[t]-submodule of K{τ}<rkφ,
(iii) Ext10,τ (φ, ψ) is an Fq[t]-submodule of Ext1τ (φ, ψ),
(iv) Ext10,τ (φ, ψ) has a natural structure of a t-module.

Proof. The proof of part (i) is similar to the proof of Lemma 3.1. Recall, that 
Ext10,τ (φ, ψ) = Der0(φ, ψ)/Derin(φ, ψ) ∩Der0(φ, ψ) and δ(cτk) ∈ Der0(φ, ψ) for all k ≥ 0. 
Because degτ (δcτ

k

t ) = rkφ + k each biderivation δ ∈ Der0(φ, ψ) can be reduced as in the 

proof of the Lemma 3.1. This implies (i).
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The vector space K{τ}〈1,rkφ) has the Fq[t]-module structure coming from the same for-
mulas t ∗

(
ckτ

k
)

for k = 1, 2, . . . , n − 1 as in the case K{τ}<rkφ. Therefore the standard 
inclusion K{τ}〈1,rkφ) ↪→ K{τ}<rkφ is the inclusion of Fq[t]-modules. This establishes 
(ii).
(iii) follows from (i) and (ii).
Part (iv) follows from the proof of the Proposition 5.1, where the matrix Π0

t from (5.1)
induces the homomorphism Π0 : Fq[t] −→ Matn−1(K{τ}) giving rise to the t-module 
structure on Ext10,τ (φ, ψ). �

The following theorem is a specialization of [PR03, Lemma 2.2]. However, we are able 
to describe the maps in an explicit way.

Theorem 5.3. Let φ and ψ be Drinfeld modules, such that r = rkφ − rkψ > 0. Then 
there is a short exact sequence of t-modules

0 −→ Ext10,τ (φ, ψ) −→ Ext1τ (φ, ψ) −→ Ga −→ 0. (5.4)

Proof. Let Π0
t and Πt be the matrices giving the t-module structures for Ext10,τ (φ, ψ)

and Ext1τ (φ, ψ), respectively. Then the matrix[
0 . . . 0
Irkφ−1

]

induces the inclusion of t-modules i : Ext10,τ (φ, ψ) ↪→ Ext1τ (φ, ψ). It is easy to check that 
coker(i) is the trivial t-module Ga. �
Remark 5.1. Notice that the biderivation corresponding to the extension (5.4) comes 
from the first column of Πt.

6. Ext1τ
(∏n

i=1 φi, 
∏m

j=1 ψj

)
We have the following generalization of Proposition 5.1:.

Theorem 6.1. Assume that φi, ψj for i = 1, . . . , n, j = 1, . . . , m are Drinfeld modules, 
such that rkφi > rkψj for all i, j. Then Ext1τ

(∏n
i=1 φi, 

∏m
j=1 ψj

)
has a natural structure 

of a t-module.

Proof. Let φi(t) = θ +
ni∑
k=1

ai,kτ
k for i = 1, . . . , n and ψj(t) = θ +

mj∑
k=1

bj,kτ
k for j =

1, . . . , m. We put
N = max{ni | i = 1, . . . , n} and M = max{mj | j = 1, . . . ,m}.
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Denote by Ej×i the m × n the elementary matrix with the only one non-zero element 
equal to 1 at j × i place. The elements δ(cτrEj×i) generate Derin

(∏n
i=1 φi, 

∏m
j=1 ψj

)
, 

where

δ(cτrEj×i)(t) = Ej×i ·
(
c
(
θ(r) − θ

)
τ r +

N∑
l=1

ca
(r)
i,l τ

r+l −
M∑
l=1

c(l)bj,lτ
l+r

)
︸ ︷︷ ︸

∈Derin(φi,ψj)

Then

Derin
( n∏

i=1
φi,

m∏
j=1

ψj

)
=

⎡⎢⎢⎢⎢⎣
Derin(φ1, ψ1) · · · Derin(φn, ψ1)
Derin(φ1, ψ2) · · · Derin(φn, ψ2)

...
. . .

...
Derin(φ1, ψm) · · · Derin(φn, ψm)

⎤⎥⎥⎥⎥⎦ ,

and therefore

Ext1τ
( n∏

i=1
φi,

m∏
j=1

ψj

)
∼=

⎡⎢⎢⎢⎢⎣
Ext1τ (φ1, ψ1) · · · Ext1τ (φn, ψ1)
Ext1τ (φ1, ψ2) · · · Ext1τ (φn, ψ2)

...
. . .

...
Ext1τ (φ1, ψm) · · · Ext1τ (φn, ψm)

⎤⎥⎥⎥⎥⎦ , (6.1)

as Fq-linear spaces.
Moreover, for a ∈ Fq[t] and a biderivation δ ∈ Der

(∏n
i=1 φi, 

∏m
j=1 ψj

)
we have

a ∗ δ =
(

m∏
j=1

ψj

)
(a) · δ =

=

⎡⎢⎢⎢⎢⎣
ψ1(a) 0 · · · 0

0 ψ2(a) · · · 0
...

...
. . .

...
0 0 · · · ψm(a)

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
δ1×1(τ) · · · δ1×n(τ)
δ2×1(τ) · · · δ2×n(τ)

...
. . .

...
δm×1(τ) · · · δm×n(τ)

⎤⎥⎥⎥⎥⎦ =

=

⎡⎢⎢⎢⎢⎣
ψ1(a) · δ1×1(τ) ψ1(a) · δ1×2(τ) · · · ψ1(a) · δ1×n(τ)
ψ2(a) · δ2×1(τ) ψ2(a) · δ2×2(τ) · · · ψ2(a) · δ2×n(τ)

...
...

. . .
...

ψm(a) · δm×1(τ) ψm(a) · δm×2(τ) · · · ψm(a) · δm×n(τ)

⎤⎥⎥⎥⎥⎦ =

=

⎡⎢⎢⎢⎢⎣
a ∗ δ1×1(τ) a ∗ δ1×2(τ) · · · a ∗ δ1×n(τ)
a ∗ δ2×1(τ) a ∗ δ2×2(τ) · · · a ∗ δ2×n(τ)

...
...

. . .
...

a ∗ δm×1(τ) a ∗ δm×2(τ) · · · a ∗ δm×n(τ)

⎤⎥⎥⎥⎥⎦ .
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Hence the isomorphism (6.1) preserves the structure of Fq[t]-modules. Because rkφi >

rkψj , then Ext1τ (φi, ψj) has a structure of a t-module. Let Πi×j : Fq[t] −→ Matni
(K){τ}

be the map, which gives the structure of the t-module on Ext1τ (φi, ψj) in the base τ l, l =
0, 1, . . . , ni − 1, same as in the proof of the Proposition 5.1.

Let eli×j denote the element τ l · Ei×j . As Fq[t]-modules

Ext1τ
( n∏

i=1
φi,

m∏
j=1

ψj

)
∼=

⎡⎢⎢⎢⎢⎣
Ext1τ (φ1, ψ1) · · · Ext1τ (φn, ψ1)
Ext1τ (φ1, ψ2) · · · Ext1τ (φn, ψ2)

...
. . .

...
Ext1τ (φ1, ψm) · · · Ext1τ (φn, ψm)

⎤⎥⎥⎥⎥⎦ ,

we choose the following coordinate system:

(
el1×1

)n1−1

l=0
,
(
el2×1

)n1−1

l=0
, . . . ,

(
elm×1

)n1−1

l=0
,(

el1×2

)n2−1

l=0
,
(
el2×2

)n2−1

l=0
, . . . ,

(
elm×2

)n2−1

l=0
,

...(
el1×n

)n1−1

l=0
,
(
el2×n

)n1−1

l=0
, . . . ,

(
elm×n

)nn−1

l=0
.

Then the t-module structure on Ext1τ
(∏n

i=1 φi, 
∏m

j=1 ψj

)
is given by the map Π :

Fq[t] −→ Matm·
∑n

i=1ni
(K){τ}, defined by

Π(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[
Π1×j(t)

]m
j=1

0 · · · 0

0
[
Π2×j(t)

]m
j=1

· · · 0
...

...
. . .

...
0 0 · · ·

[
Πn×j(t)

]m
j=1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where 
[
Πi×j(t)

]m
j=1

is the diagonal matrix with the elements Πi×1(t), Πi×2(t), . . . , 
Πi×m(t) on the diagonal. �
Corollary 6.2. Assume that φi, ψj for i = 1, . . . , n, j = 1, . . . , m are Drinfeld modules, 
such that rkφi > rkψj for all i, j. Then there is a short exact sequence of t-modules

0 −→ Ext0,τ
( n∏

φi,
m∏

ψj

)
−→ Ext1

( n∏
φi,

m∏
ψj

)
−→ Gn·m −→ 0.
i=1 j=1
τ

i=1 j=1
a
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7. Ext1τ (φ, ψ) for Drinfeld modules φ and ψ with rkφ ≤ rkψ

7.1. Case rkφ = rkψ

This case is difficult to handle. We can express the generators δ(cτk), where c ∈ K, k =
0, 1 . . . , of the space Derin(φ, ψ) in the following way:

δ(cτk)(t) = cτkφt − ψtcτ
k = cτk

(
θ +

n∑
i=1

aiτ
i
)
−
(
θ +

n∑
j=1

bjτ
j
)
cτk

= c(θ(k) − θ)τk +
n+k∑

j=k+1

(
ca

(k)
j−k − c(j−k)bj−k

)
τ j .

(7.1)

Notice that we cannot claim that the polynomial in the variable τ has degree n + k

which was important for the identification of the biderivation cjτ j with the polynomial 
w(τ) ∈ K{τ}. However excluding finite number of c′s in every degree k one can express 
a biderivation cjτ j as a polynomial in K(τ) of degree less than n. At every stage of the 
reduction process, in order to assure vanishing of the term with highest power of τ , a 
solution of a polynomial equation with the coefficients in the function field is required. 
There are, in some cases, efficient algorithms to do this (cf. [GS00]). However, it is 
unreasonable to expect that the roots of the polynomials that appear are expressed as 
polynomials in the variables cj . So, in general we do not obtain a t-module structure.

7.2. Case rkφ < rkψ

Let K be a perfect field. Denote by σ the inverse map to τ . For the sake of simplicity 
we denote the value of σk(c) as c(−k) for c ∈ K. Then the ring K{σ} is the ring of adjoint 
twisted polynomials in K such that

σx = x(−1)σ for x ∈ K, (7.2)

(cf. [G95]). We can consider the tσ-module which we can define as in Definition 2.1
by replacing τ with σ. Similarly, we define a morphism of the tσ-modules. Again the 
category of tσ-modules with the zero tσ-module attached is an additive, Fq[t]-linear 
category. Moreover, there is an isomorphism of Fq[t]-modules

Ext1σ(Φad,Ψad) ∼= Der(Φad,Ψad)/Derin(Φad,Ψad),

where Φad and Ψad are tσ-modules.
Let ω(x) =

∑n
i=0 aix

i then ω(τ) ∈ K{τ} and ωad = ω(σ) ∈ K{σ}. Let φ(x) =
θ +

∑n
i=1 aix

i and ψ(x) = θ +
∑m

i=1 bix
i be polynomials in K[x] then φ(τ), ψ(τ) are 
Drinfeld modules and φ(σ), ψ(σ) are Drinfeld tσ-modules.
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Lemma 7.1. Let φ(x) = θ +
∑n

i=1 aix
i and ψ(x) = θ +

∑m
i=1 bix

i be polynomials in K[x]
such that degφ(x) > degψ(x) and let the t-module Ext1τ (φ(τ), ψ(τ)) be given by the map

Π : Fq[t] −→ Matn(K{τ}).

Then the Fq[t]-module Ext1σ(φ(σ), ψ(σ)) has a structure of a tσ-module, given by the map

Π̂ : Fq[t] −→ Matn(K{σ}),

where the matrix Π̂t is obtained from the matrix Πt, by replacing τ with σ and coefficients 
of the form c(i) with coefficients of the form c(−i).

Proof. Similarly as in the proof of Lemma 3.1 we reduce a biderivation δ ∈ Der(φ(σ),
ψ(σ)) by the generators δ(cσk) of Derin(φ(σ), ψ(σ)). As a result we obtain that

Der(φ(σ), ψ(σ)) ∼= K{σ}<n :=
{
w(σ) ∈ K{σ} | degσ(w) < n

}
.

Let cσk be a generator of K{σ}<n. Then

t ∗ ciσi = ψ(σ)ciσi = θciσ
i +

m∑
j=1

bjc
(−j)
i σj+i. (7.3)

Comparing the equality (7.3) with the value of t ∗ciτ i (see (5.2)), we conclude that t ∗ciσi

can be obtained from t ∗ ciτ i, by replacing τ with σ and coefficients of the form c(j)i with 
the coefficients of the form c(−j)

i .
It is easy see, that in the same way, we can obtain the generator δ(cσk) from δ(cτk). 

Therefore after the reduction process t ∗ciσi can be obtained from t ∗ciτ i by the previously 
described replacement. This proves the claim. �
Example 7.1. Consider the following polynomials: φ(x) = θ+ax3 and ψ(x) = θ+ bx2 for 
fixed a, b ∈ K. Then the t-module structure on Ext1τ (φ(τ), ψ(τ)) is given by the following 
matrix:

Πt =

⎡⎢⎢⎢⎣
θ 0 0
0 θ

b

a(1)

(
θ − θ(1)

)
τ2

bτ2 b · b(2)
a(2) τ4 θ + b · b(2) · b(4)

a(5) · a(2) τ6

⎤⎥⎥⎥⎦
Then the tσ-module structure on Ext1σ(φ(σ), ψ(σ)) is given by the matrix:

Π̂t =

⎡⎢⎢⎢⎣
θ 0 0
0 θ

b

a(−1)

(
θ − θ(−1)

)
σ2

b · b(−2) b · b(−2) · b(−4)

⎤⎥⎥⎥⎦

bσ2

a(−2) σ4 θ +
a(−5) · a(−2) σ6
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Let us note, that in this example we did not carry out calculations, because the matrix 
Πt can be easily obtained using the recursive procedure described in Proposition 5.1.

Consider the following maps:

(−)σ : K{τ} → K{σ};
( n∑

i=0
aiτ

i
)σ

=
n∑

i=0
a
(−i)
i σi, (7.4)

(−)τ : K{σ} → K{τ};
( n∑

i=0
biσ

i
)τ

=
n∑

i=0
b
(i)
i τ i. (7.5)

These maps are Fq-linear mutual inverses. We associate with Φ : Fq[t] → Mate(K{τ})
the adjoint homomorphism

Φσ : Fq[t] → Mate(K{σ}) (7.6)

such that each matrix Xt is mapped to 
[(
Xt(τ)

)σ]T i.e. the matrix entry Xi,j(τ) is 
mapped to 

(
Xj,i(τ)

)σ. The inverse of (−)σ is given by the map that associates with 
Γ : Fq[t] → Mate(K{σ}) the following homomorphism:

Γτ : Fq[t] → Mate(K{τ}); Xt →
[(
Xt(σ)

)τ]T (7.7)

We have the following duality:

Theorem 7.2. Assume that K is a perfect A-field. Let Φ and Ψ be t-modules. Then there 
exists an isomorphism of Fq[t]-modules:

Ext1τ (Φ,Ψ) ∼= Ext1σ(Ψσ,Φσ) (7.8)

Proof. Notice that

Ext1τ (Φ,Ψ) = Der(Φ,Ψ)/Derin(Φ,Ψ); t ∗ δt(τ) = Ψt · δt(τ) (7.9)

and

Ext1σ(Ψσ,Φσ) = Der(Ψσ,Φσ)/Derin(Ψσ,Φσ); t ∗ δt(τ) = δσt (σ)Ψσ
t (7.10)

One readily verifies that (−)σ is well defined since it maps inner biderivations onto 
inner biderivations. Similarly, for (−)τ . Thus we have a bijective map (induced by (−)σ) 
Ext1τ (Φ, Ψ) → Ext1σ(Ψσ, Φσ). As

(t ∗ cτk)σ = (Ψtcτ
k)σ = c(−k)σkΨσ

t = t ∗ c(−k)σk = t ∗ (cτk)σ
we see that (−)σ is a homomorphism of Fq[t]-modules. �
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Lemma 7.1 and Theorem 7.2 allow one to compute easily the Fq[t]-module structure of 
Ext1τ (φ, ψ) for Drinfeld modules satisfying rkφ < rkψ. We will see that this Fq[t]-module 
structure comes from the tσ-module structure in a natural way.

Example 7.2. Let ψt = θ+ bτ2 and φt = θ+aτ3, for fixed a, b ∈ K, be Drinfeld modules. 
Then Theorem 7.2 implies that there is an isomorphism of Fq[t]-modules

Ext1τ (θ + bτ2, θ + aτ3) ∼= Ext1σ(θ + a(−3)σ3, θ + b(−2)σ2).

By Lemma 7.1 the adjoint tσ-module structure on

Ext1σ(θ + a(−3)σ3, θ + b(−2)σ2)

is given by the matrix Π̂t obtained from matrix Πt of

Ext1τ (θ + a(−3)τ3, θ + b(−2)τ2),

by replacing τ with σ and coefficients of the form c(i) with coefficients of the form c(−i). 
Therefore Ext1τ (θ + bτ2, θ + aτ3) has the tσ-module structure, given by the matrix

⎡⎢⎢⎢⎣
θ 0 0

0 θ
b(−2)

a(−4)

(
θ − θ(−1)

)
σ2

b(−2)σ2 b(−2) · b(−4)

a(−5) σ4 θ + b(−2) · b(−4) · b(−6)

a(−8) · a(−5) σ6

⎤⎥⎥⎥⎦
The following theorem is a consequence of Theorem 5.3, Lemma 7.1 and Theorem 7.2.

Theorem 7.3. Assume that K is a perfect A-field. Let φ and ψ be Drinfeld modules, such 
that rkφ < rkψ. There is a short exact sequence of tσ-modules

0 −→ Ext10,τ (φ, ψ) −→ Ext1τ (φ, ψ) −→ Ga −→ 0. (7.11)

Remark 7.3. In a similar way, one can prove “tσ-version” of the Theorem 6.1 and Corol-
lary 6.2 for the products of Drinfeld modules.

8. Ext1τ (Φ, ψ), where Φ is a t-module and ψ is a Drinfeld module

In this section we consider Ext1τ , where Φ is a t-module such that the matrix at the 
highest power τ rkΦ of Φt is invertible and ψ is a Drinfeld module. First assume that this 

matrix is the identity matrix.
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Lemma 8.1. Let Φt = (θI+NΦ)τ0+
n∑

j=1
Ajτ

j be a t-module of dimension d, where An = I

and let ψt = θ+
m∑
j=1

bjτ
j be a Drinfeld module. If rk Φ > rkψ then we have the following 

isomorphisms of Fq− vector spaces:

(i) Ext1τ (Φ, ψ) ∼=
(
K{τ}<rk Φ

)⊕d

(ii) Ext0,τ (Φ, ψ) ∼=
⊕d

i=1 K{τ}[1,ri], where ri = rk Φ − 1, if the i-th row of NΦ is null 
and ri = rk Φ otherwise.

Proof. Part (i): Any biderivation δ ∈ Der(Φ, ψ) is described by a matrix belonging to 
Mat1×d(K{τ}). Let Ei ∈ Mat1×d(K) be a matrix which has 1 at the i-th place and 
zeroes otherwise. We will determine an inner biderivation δ(cτkEi). Denote by aj,i×l the 
i × l-term of matrix Aj . Then the corresponding inner biderivation has the following 
form:

δ
(cτkEi)
t =cτkEi

(
(θI + NΦ)τ0 +

n∑
j=1

Ajτ
j
)
−
(
θ +

m∑
j=1

bjτ
j
)
cτkEi = (8.1)

=
[

n−1∑
j=1

a
(k)
j,i×1τ

k+j , . . . ,
n−1∑
j=1

a
(k)
j,i×i−1τ

k+j , c(θ(k) − θ)τk+

+
m∑
j=1

(
a
(k)
j,i×i − c(j)

)
τk+j +

n−1∑
j=m+1

a
(k)
j,i×iτ

k+j + cτk+n,

n−1∑
j=1

a
(k)
j,i×i+1τ

k+j , . . . ,
n−1∑
j=1

a
(k)
j,i×dτ

k + j

]
+ cEiN

(k)
Φ τk,

where N (k)
Φ indicates that all terms of the matrix NΦ are raised to the power qk. Notice 

that a polynomial at the i-th coordinate of the inner biderivation (8.1) has degree k +
n and the polynomials at all other coordinates have degrees less than k + n. Thus 
we can proceed similarly as in the proof of Lemma 3.1 and reduce the biderivation 
δ so that at every coordinate we obtain a polynomial in τ of degree less than n =
rk Φ. It is obvious that two different reduced biderivations determine different cosets in 
Der(Φ, ψ)/Derin(Φ, ψ). This proves part (i).
Part (ii): Let δ ∈ Der0(Φ, ψ), i.e. δt has a zero constant term. Notice that by means of 
the inner biderivation δ(cτ0Ei) ∈ Der0(Φ, ψ) for i ∈ {0, 1, . . . , d} we can reduce the i-th 
coordinate of δt to a polynomial of degree less than rk Φ. If δ(cτ0Ej) /∈ Der0(Φ, ψ) then 
the j-th coordinate of δt can be reduced to a polynomial of degree less than or equal to 
rk Φ. To finish the proof notice that the form of the inner biderivation (8.1) implies that 

0

δ(cτ Ei) ∈ Der0(Φ, ψ) iff EiNΦ = 0 i.e. the i-th row of NΦ is zero. �
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Proposition 8.2. Let Φt = (θI + NΦ)τ0 +
n∑

j=1
Ajτ

j be a t-module of dimension d, where 

An = I and let ψt = θ +
m∑
j=1

bjτ
j be a Drinfeld module. If rk Φ > rkψ then

(i) Ext1τ (Φ, ψ) has the natural structure of a t-module,
(ii) there exists a short exact sequence of t-modules:

0 −→ Ext0,τ (Φ, ψ) −→ Ext1τ (Φ, ψ) −→ Gs
a −→ 0,

where s is the number of zero rows of the nilpotent matrix NΦ.

Proof. Proof of part (i) is analogous to the proof of Proposition 5.1. Let Ei ∈ Mat1×d
be a matrix which has 1 at the i-th place and zeroes at all other places. From Lemma 8.1
we know that

Ext1τ (Φ, ψ) ∼=
(
K{τ}<rk Φ

)⊕d

.

Thus in order to transfer the Fq[t]-module structure to the space 
(
K{τ}<rk Φ

)⊕d

it 
suffices to find multiplication by t on the generators of the form cτkEi, where 0 ≤ k <

rk Φ and i = 1, 2, . . . , d. If a degree of t ∗ckτk is bigger than rk Φ then appropriate terms, 
starting from the term with the highest power of τ , can be reduced by means of the inner 
biderivations of the form δ(cτkEi). After each reduction at every coordinate we obtain a 
polynomial satisfying conditions (i) − (iv) of the proof of Proposition 5.1. In this way 
after the following choice of basis:

(τkE1)n−1
k=0 , (τ

kE2)n−1
k=0 , . . . , (τ

kEd)n−1
k=0

we see that Ext1τ (Φ, ψ) is a t-module with a zero nilpotent matrix.
It is also worth noting that reducing by the inner biderivations δ(cτkEi) for any i we 
cannot obtain a nonzero term at τ0El if δ(cτ0El) ∈ Der0(Φ, ψ). This means that if 
δ(cτ0El) ∈ Der0(Φ, ψ) then the row corresponding to the coordinate τ0El in the matrix 
Πt is of the form [

0, . . . , 0, θ, 0 . . . , 0
]
, (8.2)

where the only element θ corresponds to the coordinate τ0El.
For the proof of (ii) recall that there exists a canonical embedding Ext0,τ (Φ, ψ) −→
Ext1τ (Φ, ψ) defined on the level of biderivations. This map is given by a matrix of twisted 
polynomials in K{τ} such that the row corresponding to the coordinate τ0Ei is zero iff 
the inner biderivation δ(cτ0Ei) ∈ Der0(Φ, ψ). Let s be the number of inner biderivations 
of the form δ(cτ0Ei) belonging to Der0(Φ, ψ). Consider a map g : Ext1τ (Φ, ψ) −→ Gs

a given 

by a row matrix where the only nonzero elements are equal to 1 at places corresponding 
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to the coordinates for which δ(cτ0Ei) ∈ Der0(Φ, ψ). In order to show that g is a morphism 
of t-modules one has to check the equality g · Πt = θ · g. This follows from the fact that 
the row of Πt corresponding to the coordinate τ0El is of the form (8.2) if δ(cτ0El) ∈
Der0(Φ, ψ). Thus we obtain the following exact sequence of t-modules.

0 −→ Ext0,τ (Φ, ψ) −→ Ext1τ (Φ, ψ) −→ Gs
a −→ 0. �

The case where Φ is a t-module such that Φt has an invertible matrix at τ rkΦ can be 
derived from the Proposition 8.2. We have the following:

Theorem 8.3. Let Φt = (θI +NΦ)τ0 +
n∑

j=1
Ajτ

j be a t-module of dimension d, where An

is an invertible matrix and let ψt = θ +
m∑
j=1

bjτ
j be a Drinfeld module. If rk Φ > rkψ

then

(i) Ext1τ (Φ, ψ) has a natural structure of a t-module,
(ii) there exists a short exact sequence of t-modules

0 −→ Ext0,τ (Φ, ψ) −→ Ext1τ (Φ, ψ) −→ Gs
a −→ 0,

where s is the number of zero rows in the matrix A−1
n NΦ.

Proof. In the current situation, for the reduction process, we use different inner bideriva-
tions than these used in the proof of Proposition 8.2. Let cτkEiA

−1
n ∈ Mat1×d(K{τ}). 

We see that the inner biderivations δ(cτkEiA
−1
n ) again have the property that a polyno-

mial at the i-th coordinate has degree n + k and polynomials at all other coordinates 
have degrees less than n + k. Analogous reasoning to that of Proposition 8.2 completes 
the proof of (i).
For the proof of (ii) we have to check that the inner biderivation δ(cτ0EiA

−1
n ) belongs to 

Der0(Φ, ψ). To do this we compute a constant term of this inner biderivation:

c0τ
0EiA

−1
n (θI + NΦ) − θc0τ

0EiA
−1
n =

=c0τ
0EiA

−1
n θI + c0τ

0EiA
−1
n NΦ − θc0τ

0EiA
−1
n =

=c0τ
0θIEiA

−1
n − θc0τ

0EiA
−1
n + c0τ

0EiA
−1
n NΦ = c0τ

0EiA
−1
n NΦ

Therefore, δ(cτ0EiA
−1
n ) ∈ Der0(Φ, ψ) iff the i-th row of the matrix A−1

n NΦ is zero. Similar 
reasoning as in the proof of Proposition 8.2 yields the result. �
Just as in Theorem 6.1, one can show the following:
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Theorem 8.4. Let Φt = (θI + NΦ)τ0 +
n∑

j=1
Ajτ

j be a t-module of dimension d, where 

An is an invertible matrix. Let ψi i = 1, . . . , m be Drinfeld modules. If rk Φ > rkψi for 
i = 1, . . . , m then

(i) Ext1τ (Φ, 
∏m

i=1 ψi) has a natural structure of a t-module,
(ii) there exists a short exact sequence of t-modules

0 −→ Ext0,τ (Φ,
m∏
i=1

ψi) −→ Ext1τ (Φ,
m∏
i=1

ψi) −→ Gm·s
a −→ 0,

where s is the number of zero rows of the matrix A−1
n NΦ.

One can also show “tσ-version” of Theorems 8.3 and 8.4. We state a more general 
result for the product of Drinfeld modules:

Theorem 8.5. Let K be a perfect field. Let Ψt = (θI +NΨ)τ0 +
n∑

j=1
Bjτ

j be a t-module of 

dimension d, where Bn is an invertible matrix and let 
∏m

i=1 φi be a product of Drinfeld 
modules. If rk Ψ > rkφi for i = 1, . . . , m then there exists a short exact sequence of 
tσ-modules:

0 −→ Ext0,τ (
m∏
i=1

φi,Ψ) −→ Ext1τ (
m∏
i=1

φi,Ψ) −→ Gm·s
a −→ 0,

where s is the number of nonzero rows of the matrix A−1
n NΨ.

9. Ext1τ (Φ, C⊗e) for t-module Φ

In this section, we show that the method of reductions by means of inner biderivations 
used earlier allows one to determine the space of extensions for a t-module Φ such that 
Φt has an invertible matrix at τ rk Φ and C⊗e is the e-th tensor of a Carlitz module.
Recall from [AT90] that C⊗e = θIe + Ne + Ee×1τ where

Ie =

⎡⎢⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤⎥⎥⎥⎥⎦ , Ne =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Ee×1 =

⎡⎢⎢⎢⎢⎣
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤⎥⎥⎥⎥⎦ ∈ Mate(K).
1 0 · · · 0
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Lemma 9.1. Let Φt = (θI+NΦ)τ0+
n∑

j=1
Ajτ

j be a t-module of dimension d, such that An

is an invertible matrix and let C⊗e be the e-th tensor of the Carlitz module. If rk Φ ≥ 2
then we have the following isomorphisms of Fq-vector spaces:

(i) Ext1τ (Φ, C⊗e) ∼= Mate×d

(
K{τ}<rk Φ

)
,

(ii) Ext0,τ (Φ, C⊗e) ∼=

⎡⎢⎢⎢⎢⎣
K{τ}[1,r1] K{τ}[1,r2] · · · K{τ}[1,rd]
K{τ}[1,rk Φ] K{τ}[1,rk Φ] · · · K{τ}[1,rk Φ]

...
...

. . .
...

K{τ}[1,rk Φ] K{τ}[1,rk Φ] · · · K{τ}[1,rk Φ]

⎤⎥⎥⎥⎥⎦,

where rj = rk Φ − 1 if the j-th row of the matrix A−1
n NΦ is zero and rj = rk Φ

otherwise.

Proof. Let Ei×j be a matrix with the one nonzero entry equal to 1 at the place i × j. 
Then a similar calculation to that done in the proof of the Theorem 8.3 shows that the 
inner biderivation δ(U) for U = ckτ

kEi×jA
−1
n is given by a matrix which as the i × j

entry has a polynomial of degree k + rk Φ and at all the other entries polynomials of 
degrees less than k + rk Φ. Reduction by biderivations chosen in such a way yields (i).
For the proof of part (ii) notice that if the inner biderivations δ(U) for U = c0τ

0Ei×jA
−1
n

belong to Der0(Φ, C⊗e) then we can use this biderivation in the reduction process 
and get ri×j = rk Φ − 1 and ri×j = rk Φ otherwise. ri×j denotes here the degree of 
a polynomial occurring as the i × j entry of the reduced matrix. In order to decide 
whether δ(U) ∈ Der0(Φ, C⊗e) or not one has to compute the constant term of δ(U) where 
U = c0τ

0Ei×jA
−1
n . This constant term is of the following form:

c0τ
0Ei×jA

−1
n (θId + NΦ) − (θIe + Ne)c0τ0Ei×jA

−1
n =

=c0θτ
0Ei×jA

−1
n + c0τ

0Ei×jA
−1
n NΦ − c0θτ

0Ei×jA
−1
n − c0τ

0NeEi×jA
−1
n =

=c0τ
0Ei×jA

−1
n NΦ − c0τ

0NeEi×jA
−1
n = c0

(
Ei×jA

−1
n NΦ −NeEi×jA

−1
n

)
τ0

Since Ne =
∑e

k=2 Ek−1×k we have

NeEi×j =
{

0 if i = 1
Ei−1×j if i = 2, 3, . . . , e.

Then if i = 2, 3, . . . , e we have the equality NeEi×jA
−1
n = Ei−1×jA

−1
n 	= 0. This is 

because as the result of the matrix multiplication Ei−1×j · A−1
n we obtain a matrix in 

which the (i − 1)-th row is equal to the j-th row of the matrix An and all other rows 
are zero. Of course all rows of An are nonzero. Therefore one concludes that δ(U) /∈
Der0(Φ, C⊗e) for U = c0τ

0Ei×jA
−1
n and i = 2, 3, . . . , e. For i = 1 we see that δ(U) ∈
Der0(Φ, C⊗e) iff the j-th row of the matrix A−1
n NΦ is zero. �
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Theorem 9.2. Let Φt = (θI + NΦ)τ0 +
n∑

j=1
Ajτ

j be a t-module of dimension d where An

is an invertible matrix and let C⊗e be the e-th tensor of the Carlitz module. If rk Φ ≥ 2, 
then

(i) Ext1τ (Φ, C⊗e) has a natural structure of a t-module,
(ii) there exists a short exact sequence of t-modules

0 −→ Ext0,τ (Φ, C⊗e) −→ Ext1τ (Φ, C⊗e) −→ Gs
a −→ 0,

where s is the number of nonzero rows of the matrix A−1
n NΦ.

Proof. The scheme of the proof is the same as of analogous theorems. One uses 
Lemma 9.1 and reduction by means of the inner biderivations described in the proof 
of this Lemma. The reduction process fulfills the properties (i) − (iv) described in the 
proof of the Proposition 5.1. In the current situation we use the following coordinate 
system: (

E1×1ckτ
k
)rk Φ−1

k=0
,
(
E1×2ckτ

k
)rk Φ−1

k=0
, · · ·

(
E1×dckτ

k
)rk Φ−1

k=0
,

(
E2×1ckτ

k
)rk Φ−1

k=0
,
(
E2×2ckτ

k
)rk Φ−1

k=0
, · · ·

(
E2×dckτ

k
)rk Φ−1

k=0
,

...
...

...
...

...
...

...
...(

Ee×1ckτ
k
)rk Φ−1

k=0
,
(
Ee×2ckτ

k
)rk Φ−1

k=0
, · · ·

(
Ee×dckτ

k
)rk Φ−1

k=0
.

It is worth pointing out a significant difference which occurs in this case. In the former 
cases Ext1τ was a t-module with the zero nilpotent matrix which was a result of the 
aforementioned properties (iii) and (iv) of Proposition 5.1. In the current case, reductions 
again will not change this, but at the stage of the multiplication t ∗ Ei×jckτ

k we can 
obtain nonzero entries of the nilpotent matrix. More precisely for i = 2, 3, . . . , e we 
obtain:

t ∗ Ei×jckτ
k = C⊗e ·Ei×jckτ

k =
(
θIe + Ne + E1×eτ

)
Ei×jckτ

k

= θEi×jckτ
k + Ei−1×jckτ

k

=
[
0, . . . , 0, 0, . . . , 0, 1, 0 . . . , 0︸ ︷︷ ︸

i−1×j

, 0, . . . , 0, θ, 0 . . . , 0︸ ︷︷ ︸
i×j

, 0 . . . , 0
]
|ck

.

Thus NExt1(Φ,C⊗e) is an upper triangular matrix with zeroes on the diagonal and there-
fore nilpotent. This finishes the proof of (i). Proof of (ii) follows the lines of the proof 

of part (ii) of Theorem 8.3. �
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Remark 9.1. Similarly as at the end of Section 8 using Theorem 7.2 we can prove the 
“tσ−- version” of the Theorem 9.2.

10. Pushouts and pullbacks for t-modules and their applications

In this section we study pullbacks and pushouts in the category of t-modules. For 
definitions and basic properties of these the reader is advised to consult [M78]. In what 

follows by 

[
0
1

]
we mean the map of t-modules (ψ, Gm

a ) ↪→ (X, Gm+n
a ) which on un-

derlying group schemes is given by the injection Gm
a

∼= 0n × Gm
a ↪→ Gm+n

a . Similarly, 
by 
[

1 0
]

we denote the map of t-modules (X, Gm+n
a ) → (ψ, Gn

a) which on underlying 

group schemes is given by the surjection Gm+n
a → Gn

a×0m ∼= Gn
a . So that in the category 

of Fq[t]-modules pullbacks and pushouts exist follows from the fact that this category is 
abelian. In the next theorem we show that they exist in the category of t-modules and 
can be nicely described in the language of biderivations.

Theorem 10.1. Let

δ : 0 −→ F −→ X −→ E −→ 0

be a short exact sequence of t-modules, given by the biderivation δ. Then

(i) for each morphism of t-modules g : G −→ E, the pull-back of δ by g is a t-module, 
given by the biderivation δ · g,

(ii) for each morphism of t-modules f : F −→ G, the push-out of δ by f is a t-module, 
given by the biderivation f · δ.

Proof. The sequence δ has the following form:

δ : 0 −→ F

⎡⎣ 0
1

⎤⎦
−→ X

[
1 0

]
−→ E −→ 0, (10.1)

where F (resp. E) is given by the map Ψ : Fq[t] −→ Mate(K{τ}) (resp. Φ : Fq[t] −→
Matd(K{τ})) and X is given by the following block matrix:

[
Φ 0
δ Ψ

]
: Fq[t] −→ Mate+d(K{τ}).

Proof of part (i): Let G be given by Ξ : Fq[t] −→ Matr(K{τ}). We claim that the 

following diagram



122 D.E. Kędzierski, P. Krasoń / Journal of Number Theory 256 (2024) 97–135
0 F

⎡⎣ 0
1

⎤⎦

=

Y

[
1 0

]

⎡⎣ g 0
0 1

⎤⎦
G

g

0

0 F ⎡⎣ 0
1

⎤⎦
X [

1 0
] E 0

is commutative with exact rows, where Y is given by the map:

[
Ξ 0

δ · g Ψ

]
: Fq[t] −→ Mate+d(K{τ}).

It is obvious, that the rows are exact, and it is easy to see, that the two squares are 
commutative. We will check that the middle vertical map is a morphism of t-modules.

[
g 0
0 1

]
·
[

Ξ 0
δ · g Ψ

]
=
[

gΞ 0
δ · g Ψ

]
=
[

Φ 0
δ Ψ

]
·
[
g 0
0 1

]
,

where gΞ = Φg because g is a morphism of t-modules.
It remains to show that the universal property for a pullback holds true. So, assume 

that there is a t-module Ŷ with the morphisms of t-modules α : Ŷ −→ G and β =[
β1
β2

]
: Ŷ −→ X such that gα =

[
1 0

] [ β1
β2

]
. We claim that there is a morphism of 

t-modules γ =
[
γ1
γ2

]
: Ŷ −→ Y such that

[
1 0

] [ γ1
γ2

]
= α and

[
g 0
0 1

][
γ1
γ2

]
=
[
β1
β2

]
.

It is easy to see, that γ =
[
α

β2

]
satisfies the above conditions. Therefore Y is the 

pullback given by the biderivation δ · g.
Proof of part (ii): Let G be given by Ξ : Fq[t] −→ Matr(K{τ}). It is easy to check 

that the following diagram:
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0 F

⎡⎣ 0
1

⎤⎦

f

X

[
1 0

]

⎡⎣ 1 0
0 f

⎤⎦
E

=

0

0 G ⎡⎣ 0
1

⎤⎦
Y [

1 0
] E 0

is commutative with exact rows, where Y is given by the following map:[
φ 0

f · δ Ξ

]
: Fq[t] −→ Mate+d(K{τ}).

The proof of the universal property for a pushout is similar to that for a pullback 
presented in part (i). �
Remark 10.1. Notice that from Theorem 10.1 it follows that the multiplication by a ∈
Fq[t] of the short exact sequence δ ∈ Ext1τ (Φ, Ψ) is given by the pullback of the sequence 
δ by the map Φa : Φ −→ Φ or equivalently by the pushout of the sequence δ by the map 
Ψa : Ψ −→ Ψ

Let Λ be a ring, 0 → A → B → C → 0 an exact sequence of Λ-modules and D
a Λ-module. It is a standard result in homological algebra (cf. [M95, Theorem 3.4] or 
[HS71, Theorem 5.2]) that one has a six term exact sequence called Hom− Ext sequence 
in the second variable:

0 −→ HomΛ(D,A) i◦−−→ HomΛ(D,B) π◦−−→ HomΛ(D,C) −→
δ◦−−→ Ext1Λ(D,A) −i◦−−→ Ext1Λ(D,B) −π◦−−→ Ext1Λ(D,C). (10.2)

Dually, one has the following Hom− Ext sequence in the first variable:

0 −→ HomΛ(C,D) −◦π−→ HomΛ(B,D) −◦i−→ HomΛ(A,D) −◦δ−→

−→ Ext1Λ(C,D) −◦(−π)−→ Ext1Λ(B,D) −◦(−i)−→ Ext1Λ(A,D). (10.3)

These sequences in general can be continued by higher Ext bifunctors. However, if Λ
is a P.I.D. (or more generally a Dedekind ring) the last maps in (10.2) and (10.3) are 
surjections [HS71, Corollary 5.7], [I59].

For exact sequences in the category of t-modules we obtain analogous exact sequences 

of Fq[t]-modules.



124 D.E. Kędzierski, P. Krasoń / Journal of Number Theory 256 (2024) 97–135
The following example shows that in general for t-modules (E, Φ) and (F, Ψ) we have 
Homτ (F, E) � HomFq[t](Ga(K), Ga(K)).

Example 10.2. Let φ be a Drinfeld module of rank r defined over K = Fq(t) i.e. φt =∑r
i=0aiτ

i, ai ∈ Fq[t]. It is well-known that Homτ (φ, φ) is a projective Fq[t]-module of 
rank at most r (cf. [Th04]). However, the Mordell-Weil group φ(K) = K of φ as an 
Fq[t]-module is a direct sum of a finite torsion module and a free Fq[t]-module on ℵ0
generators (cf. [P95]) This shows that Homτ (φ, φ) � HomFq[t](Ga(K), Ga(K)).

The following theorem gives an explicit description of the corresponding six term 
exact sequences:

Theorem 10.2. Let

δ : 0 −→ F
i−→ X

π−→ E −→ 0

be a short exact sequence of t-modules given by the biderivation δ and let G be a t-module.

(i) There is an exact sequence of Fq[t]-modules:

0 −→ Homτ (G,F ) i◦−−→ Homτ (G,X) π◦−−→ Homτ (G,E) −→
δ◦−−→ Ext1τ (G,F ) −i◦−−→ Ext1τ (G,X) −π◦−−→ Ext1τ (G,E) → 0.

(ii) There is an exact sequence of Fq[t]-modules:

0 −→ Homτ (E,G) −◦π−→ Homτ (X,G) −◦i−→ Homτ (F,G) −◦δ−→

−→ Ext1τ (E,G) −◦(−π)−→ Ext1τ (X,G) −◦(−i)−→ Ext1τ (F,G) → 0.

Proof. We will give a proof of part (i). The proof for part (ii) is similar and is left to 
the reader.

Recall that i =
[

0
1

]
, π =

[
1 0

]
and t-modules F , E and X are given by the maps 

Ψ : Fq[t] −→ Mate(K{τ}), Φ : Fq[t] −→ Matd(K{τ}) and[
Φ 0
δ Ψ

]
: Fq[t] −→ Mate+d(K{τ}).

Assume that G is given by Ξ : Fq[t] −→ Matr(K{τ}). The exactness at Homτ (G, F ), 
Homτ (G, X) is obvious from the form of maps i and π.

Now we consider the exactness at Homτ (G, E). Let 
[
f1
f2

]
: G −→ X be a map of 
t-modules. Hence there is an equality:
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[
f1
f2

]
Ξ =

[
Φ 0
δ Ψ

][
f1
f2

]
.

This implies

f1Ξ = Φf1 and f2Ξ = δf1 + Ψf2. (10.4)

We will prove, that an exact sequence given by the biderivation:

δ ◦ π ◦
[
f1
f2

]
= δ ◦

[
1 0

]
◦
[
f1
f2

]
= δ ◦ f1 = δf1

splits. Consider the following diagram:

0 F

⎡⎣ 0
1

⎤⎦

=

G⊕ F

[
1 0

]

⎡⎣ 1 0
f2 1

⎤⎦
G

=

0

δf1 : 0 F ⎡⎣ 0
1

⎤⎦
Y [

1 0
] G 0

,

where the lower row is given by the biderivation δf1, i.e. Y is defined by the map:[
Ξ 0
δf1 Ψ

]
: Fq[t] −→ Mate+r(K{τ}).

It is easy to see, that this diagram is commutative, with exact rows. From (10.4) the 
middle vertical map is a morphism of t-modules that is also an isomorphism. Therefore 
the sequence δf1 splits.

On the other hand, assume that for some morphism of t-modules f1 : G −→ E the 
sequence given by the biderivation δf1 splits. Therefore δf1 ∈ Derin(Ξ, Ψ), so there is 
U ∈ Mate+r(K{τ}) such that

δf1 = δ(U) = UΞ − ΨU. (10.5)

Then f =
[
f1
U

]
: G −→ X is a morphism of t-modules. Indeed

[
f1
U

]
Ξ =

[
f1Ξ
UΞ

]
=
[

Φf1
δf + ΨU

]
=
[

Φ 0
δ Ψ

][
f1
U

]

1
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where the second equality follows from (10.5) and the fact that f1 : G −→ E is a 

morphism of t-modules. Hence π ◦ f =
[

1 0
] [ f1

U

]
= f1, which shows exactness at 

Homτ (G, E).
For the exactness at Ext1τ (G, F ) let f : G −→ E be a morphism of t-modules. We will 

prove that the extension given by the biderivation −iδf splits. Recall that δf determines 
the following short exact sequence:

0 −→ F −→ Y −→ G −→ 0,

where Y is defined by the map:[
Ξ 0
δf Ψ

]
: Fq[t] −→ Matr+e(K{τ}).

Then the biderivation −iδf determines the following short exact sequence:

0 −→ X −→ Ŷ −→ G −→ 0,

where Ŷ is defined by the map:⎡⎢⎣ Ξ 0 0
0 Φ 0

−δf δ Ψ

⎤⎥⎦ : Fq[t] −→ Matr+e(K{τ}).

It is easy to check, that the following diagram:

0 X

⎡⎣ 0
1

⎤⎦

=

Y

[
1 0

]

⎡⎢⎢⎢⎣
1 0 0
−f 1 0
0 0 1

⎤⎥⎥⎥⎦

X

=

0

0 X ⎡⎣ 0
1

⎤⎦
G⊕X [

1 0
] G 0

,

is commutative and the map 

⎡⎢⎣ 1 0 0
−f 1 0
0 0 1

⎤⎥⎦ is an isomorphism of t-modules. Therefore 
the sequence −iδf splits.



D.E. Kędzierski, P. Krasoń / Journal of Number Theory 256 (2024) 97–135 127
Now consider the exact sequence:

η : 0 −→ F −→ Y −→ G −→ 0 ∈ Ext1τ (G,F ),

where Y is given by the map[
Ξ 0
η Ψ

]
: Fq[t] −→ Matr+e(K{τ}),

and assume that the sequence

−i ◦ η : 0 −→ X −→ Ŷ −→ G −→ 0 ∈ Ext1τ (G,F )

splits, where Ŷ is defined by the map⎡⎢⎣ Ξ 0 0
0 Φ 0
−η δ Ψ

⎤⎥⎦ : Fq[t] −→ Matr+e(K{τ}).

Because −i ◦ η splits, then the biderivation −i ◦ η ∈ Derin

(
Ξ, 
[

Φ 0
δ Ψ

])
. Hence, there 

is U =
[
u1
u2

]
∈ Mate+d×r(K{τ}) such that

[
0
−η

]
= δ(U) =

[
u1
u2

]
Ξ −

[
Φ 0
δ Ψ

][
u1
u2

]
=
[

u1Ξ − Φu1
u2Ξ − δu1 − Ψu2

]
.

Therefore u1 is a morphism of t-modules and

η = δu1 + Ψu2 − u2Ξ = δu1 −
(
u2Ξ − Ψu2

)
︸ ︷︷ ︸

=δ(u2)

= δu1 − δ(u2).

Thus the biderivations η and δu1 determine the same extension in Ext1τ (G, F ), which 
shows the exactness at Ext1τ (G, F ).

Now we consider exactness at Ext1τ (G, X). For η ∈ Ext1τ (G, F ) there is an equality

−π ◦
(
− i ◦ η

)
= π ◦ i(η) = 0.

Hence the sequence given by the biderivation −π ◦
(
− i ◦ η

)
splits.

On the other hand assume, that η =
[
η1
η2

]
is the biderivation determining the exact 

sequence from Ext1τ (G, X), such that −π ◦ η gives a split sequence in Ext1τ (G, E). Then
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−π ◦ η = −
[

1 0
]
◦
[
η1
η2

]
= −η1 ∈ Derin(Ξ,Φ).

Thus there is u ∈ Matd×r(K{τ}) such that −η1 = δ(u) = uΞ − Φu. We put U =[
u

0

]
∈ Matd+e×r(K{τ}). Then the inner biderivation δ(U) ∈ Derin

(
Ξ, 
[

Φ 0
δ Ψ

])
has 

the following form:

δ(U) =
[
u

0

]
Ξ −

[
Φ 0
δ Ψ

][
u

0

]
=
[
uΞ − Φu

−δu

]
=
[
δ(u)

−δu

]
.

Therefore

η + δ(U) =
[
−δ(u)

η2

]
+
[
δ(u)

−δu

]
=
[

0
η2 − δu

]
= −

[
0
1

]
◦
(
δu− η2

)
= −i ◦

(
δu− η2

)
.

Thus the sequence corresponding to η is given by the biderivation −i ◦
(
δu − η2

)
. This 

proves the exactness at Ext1τ (G, X). Now we will prove that the map: Ext1τ (G, X) −π◦−−→
Ext1τ (G, E) is a surjection.

Let

γ : 0 −→ E

⎡⎣ 0
1

⎤⎦
−→ Y

[
1 0

]
−→ G −→ 0, (10.6)

be an element of Ext1τ (G, E) where Y is given by the following map:[
Ξ 0
γ Ψ

]
: Fq[t] → Mate+r(K{τ}). (10.7)

Then there exists the following commutative diagram with exact rows:

0 X

⎡⎢⎢⎢⎣
0 0
1 0
0 1

⎤⎥⎥⎥⎦

−
[
1 0

]
Z

[
1 0

]

⎡⎣ 1 0 0
0 −1 0

⎤⎦

G

=

0

0 E ⎡⎣ 0
1

⎤⎦
Y [

1 0
] G 0

, (10.8)
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where Z is given by the following map:⎡⎢⎣ Ξ 0 0
−γ Φ 0
0 δ Ψ

⎤⎥⎦ : Fq[t] → Mate+d+r(K{τ}).

Notice that

[
1 0 0
0 −1 0

]⎡⎢⎣ Ξ 0 0
−γ Φ 0
0 δ Ψ

⎤⎥⎦ =
[

Ξ 0 0
γ −Φ 0

]
=
[

Ξ 0
γΦ

][
1 0 0
0 −1 0

]
.

Thus (10.8) is the diagram of morphisms of t-modules and 

(
−γ

0

)
→ γ, where 

(
−γ

0

)
is the extension given by the upper row of (10.8). �
Remark 10.3. In the Theorem 10.2 we assumed that the short exact sequence is given 
by the biderivation δ and in the result we obtained simple formula for the morphism 
from Homτ to Ext1τ . In the case where the short exact sequence is not given by the 
biderivation, but it is isomorphic to a sequence given by the biderivation, the six-term 
exact sequences exist. The aforementioned isomorphism of short exact sequences induces 
the isomorphism of the corresponding six-term sequences.

We finish this section with the application of the six-term exact sequence.

Example 10.4. Let F (resp. E) be a Drinfeld module given by φt = θ + τ3 (resp. ψt =
θ + τ2) and consider the exact sequence of t-modules

0 → F → X → E → 0, (10.9)

where X is the extension given by the biderivation δt = 1 + τ i.e. X is the t-module 

given by Γt =
[
θ + τ2 0
1 + τ θ + τ3

]
. Let C be the Drinfeld module given by ηt = θ + τ . 

Since rkF > rkC we have Homτ (F, C) = 0 and from the six-term exact sequence we 
obtain the short exact sequence:

0 → Ext1τ (E,C) → Ext1τ (X,C) → Ext1τ (F,C) → 0 (10.10)

One readily verifies that Ext1τ (E, C) (resp. Ext1τ (F, C)) is the t-module given by Ψt =[
θ 0

2

]
(resp. Φt =

⎡⎢⎣ θ 0 0
τ θ τ2

⎤⎥⎦).

τ θ + τ 0 τ θ
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We have:

Ext1τ (X,C) = Der(X,C)/Derin(X,C) (10.11)

= K{τ}2/
〈
δ

[
cτk, 0

]
, δ

[
0, cτk

]
| c ∈ K, k ∈ Z≥0

〉
,

where

δ

[
cτk, 0

]
=
[
cτk, 0

] [ θ + τ2 0
1 + τ θ + τ3

]
− (θ + τ)

[
cτk, 0

]
=
[
δ(cτk), 0

]
where δ(cτk) ∈ Derin(E,C)

δ

[
0, cτk

]
=
[

0, cτk
] [ θ + τ2 0

1 + τ θ + τ3

]
− (θ + τ)

[
0, cτk

]
=
[
cτk + cτk+1, δ(cτk)

]
where δ(cτk) ∈ Derin(F,C)

Thus first reducing the second coordinates by the elements δ
[
0, cτk

]
and then the 

first coordinates by δ
[
cτk, 0

]
one can see that:

Ext1τ (X,C) ∼= {
[
c0 + c1τ, d0 + d1τ + d2τ

2
]
| ci, di ∈ K} (10.12)

Enumerating the basis elements of (10.12) lexicographically i.e.

[
0, 1

]
,
[

0, τ
]
,
[

0, τ2
]
,
[

1, 0
]
,
[

1, τ
]

and computing t ∗
[

0, di · τ i
]
, i = 0, 1, 2 and t ∗

[
ci · τ i, 0

]
, i = 0, 1, in a similar to 

that in Section 4 way, one obtains that Ext1τ (X, C) is a t-module defined by the matrix:

Ωt =

⎡⎢⎢⎢⎢⎢⎣
θ 0 0 0 0
τ θ τ2 0 0
0 τ θ 0 0
0 0 −τ θ 0
0 0 −τ τ θ + τ2

⎤⎥⎥⎥⎥⎥⎦ (10.13)

Therefore [
Φt 0

]
, (10.14)
Δt Ψt
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where Δt =
[

0 0 −τ

0 0 −τ

]
. Thus we showed that the exact sequence (10.10) is an exten-

sion of t-modules.
Change of δt in (10.9) to δt = 1 + τ3 results in the change of Δt in (10.14). For the 

new data Δt =
[

0 0 −τ

0 0 (θ − θ(1))τ + τ4

]
.

Similar arguments to that in the proof of Proposition 5.1, show that the following 
assertions hold true.

Proposition 10.3. Let 0 −→ F −→ X −→ E −→ 0 be an exact sequence of t-modules, 
where F and E are Drinfeld modules, and let G be a Drinfeld module.

(i) If rkG < rkF and rkG < rkE, then there is a short exact sequence of t-modules

0 −→ Ext1τ (E,G) −→ Ext1τ (X,G) −→ Ext1τ (F,G) −→ 0.

(iD) If rkG > rkF and rkG > rkE, then there is a short exact sequence of t-modules

0 −→ Ext1τ (G,F ) −→ Ext1τ (G,X) −→ Ext1τ (G,E) −→ 0.

As an immediate consequence of the Theorem 5.3 we obtain the following theorem:

Theorem 10.4. Let 0 −→ F −→ X −→ E −→ 0 be an exact sequence of t-modules, where 
F and E are Drinfeld modules, and let G be a Drinfeld module.

(i) If rkG < rkF and rkG < rkE, then there is a short exact sequence of t-modules

0 −→ Ext0,τ (X,G) −→ Ext1τ (X,G) −→ G2
a −→ 0.

(iD) If rkG > rkF and rkG > rkE, then there is a short exact sequence of t-modules

0 −→ Ext0,τ (G,X) −→ Ext1τ (G,X) −→ G2
a −→ 0.

Remark 10.5. In the case where K is perfect, one can prove the corresponding “tσ-
versions” of the Proposition 10.3 and Theorem 10.4.

11. Extensions of dual t-motives

Now, recall the notion of a dual t-motive (cf. [BP20]).

Definition 11.1. Let K be a perfect field and let K[t, σ] be the polynomial ring satisfying 

the following relations:
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tc = ct, tσ = σt, σc = c(−1)σ, c ∈ K. (11.1)

A dual t-motive is a left K[t, σ]-module that is free and finitely generated over K{σ}
and for which there exists an l ∈ N such that (t − θ)l(H/σH) = 0. A morphism of dual 
t-motives is a morphism of K[t, σ]-modules.

For a t-module Φ → Matd(K{τ}) let H(Φ) = Mat1×d(K{σ}) i.e. a free K{τ}-module 
on d generators. Equip H(Φ) with the following Fq[t]-action:

a · h = hΦσ
a , for h ∈ H(Φ), a ∈ Fq[t]. (11.2)

Every morphism of t-modules f : Φ −→ Ψ induces a morphism of dual t-motives 
H(f) : H(Φ) −→ H(Ψ) defined by the following formula:

H(f)(h) = h · fσ for h ∈ H(Φ). (11.3)

Vice versa every morphism of dual t-motives g : H(Φ) → H(Ψ) comes from a morphism 
of t-modules.

From H(Φ) one can recover Φ as:

H(Φ)
(σ − 1)H(Φ)

∼= (Φ,Kd) (11.4)

The following theorem was proved by G. Anderson.

Theorem 11.1 (Anderson). The correspondence between dual t-motives and t-modules 
over a perfect field K gives an equivalence of categories.

Definition 11.2. We call a sequence of dual t-motives:

0 −→ H(Ψ) −→ H(Ξ) −→ H(Φ) −→ 0, (11.5)

exact if it is exact as a sequence of Fq[t]-modules. The space of all exact sequences (11.5)
for fixed Ψ and Φ will be denoted as Ext1M∨

t
(H(Φ), H(Ψ)).

Similarly as in the case of t-modules the space Ext1M∨
t

can be endowed with the 
structure of an Fq[t]-module, where the multiplication by an element a ∈ Fq[t] is given 
by the pushout of the map H(Ψa) : H(Ψ) −→ H(Ψ), (cf. Remark 10.1.)

In general an equivalence of categories need not preserve exact sequences, so an iso-
morphism of corresponding spaces of extensions is not an obvious fact. However, we have 
the following:

Theorem 11.2. Let Φ and Ψ be t-modules. Then there exists an isomorphism of Fq[t]-

modules:
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Ext1τ (Φ,Ψ) ∼= Ext1M∨
t
(H(Φ), H(Ψ)). (11.6)

Proof. Let Φ be a t-module and let h = [w1(σ), . . . , wd(σ)] ∈ H(Φ), where wi(σ) =∑ni

j=0 ai,jσ
i. Then

h =
[
w1(σ), . . . , wd(σ)

]
=

max{ni}∑
j=0

[
a1,j , . . . , ad,j

]
σj ∈

∞⊕
j=0

Kdσj .

Thus every dual t-motive H(Φ), as an Fq[t]-module, can be viewed as an element of the 
space 

⊕∞
i=0(Kd)i, where the action of a ∈ Fq[t] on the i-th component is given by the 

following formula:

a · k = kσiΦσ
a , for k ∈ (Kd)i and a ∈ A (11.7)

Notice that every component (Kd)i with the action (11.7) is an Fq[t]-module.
So we see that starting with the exact sequence of t-modules

0 → (Ψ,Ke) → (Ξ,Kd+e) → (Φ,Kd) → 0

one obtains exact sequences of Fq[t]-modules

0 −→ (Kd)i −→ (Kd+e)i −→ (Ke)i −→ 0 for all i = 0, 1, 2, . . .

Exactness follows from the formula (11.7). Thus we get an exact sequence of Fq[t]-
modules

0 →
⊕∞

i=0
(Kd)i →

⊕∞

i=0
(Kd+e)i →

⊕∞

i=0
(Ke)i → 0 (11.8)

which in turn yields an exact sequence:

0 −→ H(Ψ) −→ H(Ξ) −→ H(Φ) −→ 0.

So, H(−) preserves exact sequences.
Now assume that we have an exact sequence of dual t-motives

0 → H(F ) → H(Ξ) → H(E) → 0.

One easily verifies that the induced sequence:

0 → H(F )
(σ − 1)H(F ) → H(Ξ)

(σ − 1)H(Ξ) → H(E)
(σ − 1)H(E) → 0
is an exact sequence of Fq[t]-modules.
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From the definition of Fq[t]-module structure on Ext1M∨
t
, taking into account Theo-

rem 10.1 and Remark 10.1, it easily follows that H(−) induces an Fq[t]-module isomor-
phism:

Ext1τ (Φ,Ψ) ∼= Ext1M∨
t
(H(Φ), H(Ψ)). �

We also have the following theorem for dual t-motives:

Theorem 11.3. Let 0 → M1 → M → M2 → 0 be an exact sequence of dual t-motives and 
let N be a dual t-motive.

(i) There is an exact sequence of Fq[t]-modules:

0 −→ HomM∨
t
(N,M1) −→ HomM∨

t
(N,M) −→ HomM∨

t
(N,M2) −→

−→ Ext1M∨
t
(N,M1) −→ Ext1M∨

t
(N,M) −→ Ext1M∨

t
(N,M2) → 0.

(ii) There is an exact sequence of Fq[t]-modules:

0 −→ HomM∨
t
(M2, N) −→ HomM∨

t
(M,N) −→ HomM∨

t
(M1, N) −→

−→ Ext1M∨
t
(M2, N) −→ Ext1M∨

t
(M,N) −→ Ext1M∨

t
(M1, N) → 0.

Proof. Pick t-modules Φ1, Φ, Φ2 and Ψ such that

M1 ∼= H(Φ1), M ∼= H(Φ) M2 ∼= H(Φ2). and N ∼= H(Ψ). (11.9)

This is possible by Theorem 11.1. Now follow the proof of the Theorem 10.2 for the 
t-modules Φ1, Φ, Φ2 and Ψ and finally apply the functor H again. �
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